1. Institute of Nano/Photon Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China 2. National Demonstration Center for Experimental Physics and Electronics Education, School of Physics and Electronics, Henan University, Kaifeng 475004, China 3. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Lab of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial difference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005) https://doi.org/10.1103/RevModPhys.77.633
3
M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett. 82(9), 1847 (1999) https://doi.org/10.1103/PhysRevLett.82.1847
L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, and L. Ma, Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing, Appl. Phys. Lett. 114(5), 051104 (2019) https://doi.org/10.1063/1.5082660
6
Y. F. Zhang, Z. P. Wang, J. Qiu, Y. Hong, and B. L. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells, Appl. Phys. Lett. 115(17), 171905 (2019) https://doi.org/10.1063/1.5121275
7
P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett. 20(9), 982 (1995) https://doi.org/10.1364/OL.20.000982
8
M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett. 77(21), 4326 (1996) https://doi.org/10.1103/PhysRevLett.77.4326
9
Y. P. Zhang, A. W. Brown, and M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows, Phys. Rev. Lett. 99(12), 123603 (2007) https://doi.org/10.1103/PhysRevLett.99.123603
10
Y. Q. Zhang, Z. K. Wu, X. Yao, Z. Y. Zhang, H. X. Chen, H. B. Zhang, and Y. P. Zhang, Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media, Opt. Express 21(24), 29338 (2013) https://doi.org/10.1364/OE.21.029338
11
Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. L. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020) https://doi.org/10.1038/s41467-020-15635-9
12
Y. Q. Zhang, Z. K. Wu, M. R. Belić, H. B. Zheng, Z. G. Wang, M. Xiao, and Y. P. Zhang, Photonic Floquet topological insulators in atomic ensembles, Laser Photon Rev. 9(3), 331 (2015) https://doi.org/10.1002/lpor.201400428
P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016) https://doi.org/10.1038/nphys3842
15
Z. Y. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, Observation of parity–time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016) https://doi.org/10.1103/PhysRevLett.117.123601
16
Y. Q. Zhang, D. Zhang, Z. Y. Zhang, C. B. Li, Y. P. Zhang, F. L. Li, M. R. Belić, and M. Xiao, Optical Bloch oscillation and Zener tunneling in an atomic system, Optica 4(5), 571 (2017) https://doi.org/10.1364/OPTICA.4.000571
17
D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, Generation of Airy beams by four-wave mixing in Rubidium vapor cell, Opt. Lett. 39(15), 4557 (2014) https://doi.org/10.1364/OL.39.004557
18
H. Zhong, Y. Q. Zhang, Z. Y. Zhang, C. B. Li, D. Zhang, Y. P. Zhang, and M. R. Belić, Nonparaxial selfaccelerating beams in an atomic vapor with electromagnetically induced transparency, Opt. Lett. 41(24), 5644 (2016) https://doi.org/10.1364/OL.41.005644
J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, Electromagnetically induced Talbot effect, Appl. Phys. Lett. 98(8), 081108 (2011) https://doi.org/10.1063/1.3559610
22
Y. Q. Zhang, X. Yao, C. Z. Yuan, P. Y. Li, J. M. Yuan, W. K. Feng, S. Q. Jia, and Y. P. Zhang, Controllable multiwave mixing Talbot effect, IEEE Photonics J. 4, 2957 (2012) https://doi.org/10.1109/JPHOT.2012.2225609
23
Z. Y. Zhang, X. Liu, D. Zhang, J. T. Sheng, Y. Q. Zhang, Y. P. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018) https://doi.org/10.1103/PhysRevA.97.013603
24
R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95(5), 053902 (2005) https://doi.org/10.1103/PhysRevLett.95.053902
25
H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, PT-symmetric Talbot effects, Phys. Rev. Lett. 109(3), 033902 (2012) https://doi.org/10.1103/PhysRevLett.109.033902
26
C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, High-order quantum resonances observed in a periodically kicked Bose–Einstein condensate, Phys. Rev. Lett. 96(16), 160403 (2006) https://doi.org/10.1103/PhysRevLett.96.160403
Y. Q. Zhang, H. Zhong, M. R. Belić, X. Liu, W. P. Zhong, Y. P. Zhang, and M. Xiao, Dual accelerating Airy–Talbot recurrence effect, Opt. Lett. 40(24), 5742 (2015) https://doi.org/10.1364/OL.40.005742
29
Y. Q. Zhang, H. Zhong, M. R. Belić, C. B. Li, Z. Y. Zhang, F. Wen, Y. P. Zhang, and M. Xiao, Fractional nonparaxial accelerating Talbot effect, Opt. Lett. 41(14), 3273 (2016) https://doi.org/10.1364/OL.41.003273
T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Talbot effect for exciton polaritons, Phys. Rev. Lett. 117(9), 097403 (2016) https://doi.org/10.1103/PhysRevLett.117.097403
32
Y. Q. Zhang, M. R. Belić, H. B. Zheng, H. Chen, C. B. Li, J. P. Song, and Y. P. Zhang, Nonlinear Talbot effect from rogue waves, Phys. Rev. E 89(3), 032902 (2014) https://doi.org/10.1103/PhysRevE.89.032902
33
Y. Q. Zhang, M. R. Belić, M. S. Petrović, H. B. Zheng, H. X. Chen, C. B. Li, K. Q. Lu, and Y. P. Zhang, Twodimensional linear and nonlinear Talbot effect from rogue waves, Phys. Rev. E 91(3), 032916 (2015) https://doi.org/10.1103/PhysRevE.91.032916
34
K. Y. Zhan, Z. D. Yang, and B. Liu, Trajectory engineering of Airy–Talbot effect via dynamic linear potential, J. Opt. Soc. Am. B 35(12), 3044 (2018) https://doi.org/10.1364/JOSAB.35.003044
35
K. Y. Zhan, J. Wang, R. Y. Jiao, Z. D. Yang, and B. Liu, self‐imaging effect based on circular airy beams, Ann. Phys. 531(11), 1900293 (2019) https://doi.org/10.1002/andp.201900293
36
Y. Lumer, Y. Liang, R. Schley, I. Kaminer, E. Greenfield, D. H. Song, X. Z. Zhang, J. J. Xu, Z. G. Chen, and M. Segev, Incoherent self-accelerating beams, Optica 2(10), 886 (2015) https://doi.org/10.1364/OPTICA.2.000886
37
Z. K. Wu and Y. Z. Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and finite-Energy airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402 (2016)
38
Z. K. Wu, Q. Zhang, H. Guo, and Y. Z. Gu, Microwavecontrolled airy beam propagation in multilevel atomic vapors, Optik 164, 465 (2018) https://doi.org/10.1016/j.ijleo.2018.03.041
39
Z. K. Wu, Z. P. Wang, H. Guo, and Y. Z. Gu, Selfaccelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express 25(24), 30468 (2017) https://doi.org/10.1364/OE.25.030468
40
D. A. Steck, (2000)
41
M. D. Lukin, and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001) https://doi.org/10.1038/35095000
42
R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories, Nat. Commun. 5(1), 5189 (2014) https://doi.org/10.1038/ncomms6189
43
I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108(16), 163901 (2012) https://doi.org/10.1103/PhysRevLett.108.163901
44
Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy Airy beams in cubic–quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018) https://doi.org/10.1007/s11467-017-0707-5
45
Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017) https://doi.org/10.1007/s11467-016-0613-2