Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching
Dimuthu Wijethunge1,2, Lei Zhang1,2, Cheng Tang1,2, Aijun Du1,2()
1. School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia 2. Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.
. [J]. Frontiers of Physics, 2020, 15(6): 63504.
Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15(6): 63504.
J. M. Coronado, A Historical Introduction to Photocatalysis, in: Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, J. M. Coronado, F. Fresno, M. D. Hernández-Alonso, and R. Portela (Eds.), Springer London: London, 2013, pp 1–4
2
C. F. Goodeve and J. A. Kitchener, The mechanism of photosensitisation by solids, Trans. Faraday Soc. 34(0), 902 (1938) https://doi.org/10.1039/tf9383400902
3
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972) https://doi.org/10.1038/238037a0
4
D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fedoped CeO2 films under visible light irradiation, Sci. Rep. 4(1), 5757 (2014) https://doi.org/10.1038/srep05757
5
F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013) https://doi.org/10.1038/ncomms3195
6
P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano 4(3), 539 (2017) https://doi.org/10.1039/C6EN00478D
7
M. Luo, Y. Liu, J. Hu, H. Liu, and J. Li, One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability, ACS Appl. Mater. Interfaces 4(3), 1813 (2012) https://doi.org/10.1021/am3000903
8
T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation,J. Mater. Sci. 41(11), 3527 (2006) https://doi.org/10.1007/s10853-005-5655-8
9
A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications, J. Mater. Chem. A 5(35), 18299 (2017) https://doi.org/10.1039/C7TA04268J
10
P. Varadhan, H. C. Fu, Y. C. Kao, R. H. Horng, and J. H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction, Nat. Commun. 10(1), 5282 (2019) https://doi.org/10.1038/s41467-019-12977-x
11
L. Han, F. F. Abdi, R. van de Krol, R. Liu, Z. Huang, H. J. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells, Chem- SusChem 7(10), 2832 (2014) https://doi.org/10.1002/cssc.201402456
12
Y. Li, Y. L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Single-layer MoS2 as an efficient photocatalyst, Catal. Sci. Technol. 3(9), 2214 (2013) https://doi.org/10.1039/c3cy00207a
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visiblelight photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018) https://doi.org/10.1007/s11467-018-0760-8
15
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012) https://doi.org/10.1063/1.4769731
16
H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013) https://doi.org/10.1021/cm401661x
17
M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018) https://doi.org/10.1021/jacs.8b07855
18
P. Zhao, Y. Ma, X. Lv, M. Li, B. Huang, and Y. Dai, Twodimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum, Nano Energy 51, 533 (2018) https://doi.org/10.1016/j.nanoen.2018.07.010
19
R. M. Navarro Yerga, M. C. Álvarez Galván, F. del Valle, J. A. Villoria de la Mano, and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem 2(6), 471 (2009) https://doi.org/10.1002/cssc.200900018
20
A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38(1), 253 (2009) https://doi.org/10.1039/B800489G
21
M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007) https://doi.org/10.1016/j.rser.2005.01.009
22
A. Kakekhani and S. Ismail-Beigi, Ferroelectric-based catalysis: Switchable surface chemistry, ACS Catal. 5(8), 4537 (2015) https://doi.org/10.1021/acscatal.5b00507
23
X. Liu, Y. Wang, J. D. Burton, and E. Y. Tsymbal, Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface, Phys. Rev. B 88(16), 165139 (2013) https://doi.org/10.1103/PhysRevB.88.165139
24
D. Kim, H. Han, J. H. Lee, J. W. Choi, J. C. Grossman, H. M. Jang, and D. Kim, Electronhole separation in ferroelectric oxides for efficient photovoltaic responses, Proc. Natl. Acad. Sci. USA 115(26), 6566 (2018) https://doi.org/10.1073/pnas.1721503115
25
D. Wijethunge, C. Tang, C. Zhang, L. Zhang, X. Mao, and A. Du, Bandstructure engineering in 2D materials using ferroelectric materials, Appl. Surf. Sci. 513, 145817 (2020) https://doi.org/10.1016/j.apsusc.2020.145817
26
F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Roomtemperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016) https://doi.org/10.1038/ncomms12357
27
S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019) https://doi.org/10.1038/s41467-019-09669-x
28
A. Chandrasekaran, A. Mishra, and A. K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/ hole gas in multifunctional monolayer MXene, Nano Lett. 17(5), 3290 (2017) https://doi.org/10.1021/acs.nanolett.7b01035
C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L. J. Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett. 18(2), 1253 (2018) https://doi.org/10.1021/acs.nanolett.7b04852
31
W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of intrinsic twodimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017) https://doi.org/10.1038/ncomms14956
32
Y. Jiang, Q. Wang, L. Han, X. Zhang, L. Jiang, Z. Wu, Y. Lai, D. Wang, and F. Liu, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting, Chem. Eng. J. 358, 752 (2019) https://doi.org/10.1016/j.cej.2018.10.088
33
J. R. Zhang, X. Z. Deng, B. Gao, L. Chen, C. T. Au, K. Li, S. F. Yin, and M. Q. Cai, Theoretical study on the intrinsic properties of In2Se3/MoS2 as a photocatalyst driven by near-infrared, visible and ultraviolet light, Catal. Sci. Technol. 9(17), 4659 (2019) https://doi.org/10.1039/C9CY00997C
34
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010) https://doi.org/10.1103/PhysRevLett.105.136805
35
H. Li, K. Yu, Z. Tang, H. Fu, and Z. Zhu, High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment, Phys. Chem. Chem. Phys. 18(20), 14074 (2016) https://doi.org/10.1039/C6CP02027E
36
Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures, Langmuir 30(29), 8965 (2014) https://doi.org/10.1021/la502033t
37
F. Li, C. Shi, D. Wang, G. Cui, P. Zhang, L. Lv, and L. Chen, Improved visible-light absorbance of monolayer MoS2 on AlN substrate and its angle-dependent electronic structures, Phys. Chem. Chem. Phys. 20(46), 29131 (2018) https://doi.org/10.1039/C8CP03908A
38
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
39
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003) https://doi.org/10.1063/1.1564060
43
S. Grimme, J. Antony, S. Ehrlich, and, H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010) https://doi.org/10.1063/1.3382344
44
C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, A comparative study of lattice dynamics of three- and twodimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011) https://doi.org/10.1021/jp205116x
Z. Xie, F. Yang, X. Xu, R. Lin, and L. M. Chen, Functionalization of α-In2Se3 monolayer via adsorption of small molecule for gas sensing, Front. Chem. 6, 430 (2018) https://doi.org/10.3389/fchem.2018.00430
47
A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83(24), 245213 (2011) https://doi.org/10.1103/PhysRevB.83.245213
48
S. Lebègue and O. Eriksson, Electronic structure of twodimensional crystals from ab initiotheory, Phys. Rev. B 79(11), 115409 (2009) https://doi.org/10.1103/PhysRevB.79.115409
49
C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115(27), 13303 (2011) https://doi.org/10.1021/jp2000442
50
K. Kośmider and J. Fernández-Rossier, Electronic properties of the MoS2–WS2 heterojunction, Phys. Rev. B 87(7), 075451 (2013) https://doi.org/10.1103/PhysRevB.87.075451