Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (2): 23501   https://doi.org/10.1007/s11467-020-1000-6
  本期目录
Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy
Ming-Xiu Sui1, Zi-Bo Zhang1, Xiao-Dan Chi1, Jia-Yu Zhang1, Yong Hu1,2()
1. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
 全文: PDF(2532 KB)  
Abstract

A Monte Carlo simulated-annealing algorithm was used to study the magnetic state in an in-plane helimagnet layer on triangular lattice that exchange couples to an underlayer with strong out-of-plane anisotropy. In the single helimagnet layer with in-plane anisotropy (K), the formation of labyrinthlike domains with local spin spirals, instead of parallel stripes, is favored, and these domains rapidly transform into dense skyrmion crystals with increasing interfacial exchange coupling (J′), equivalent to a virtual magnetic field, and finally evolve to an out-of-plane uniform state at large enough J′. Moreover, with increasing K, the skyrmion crystal state can vary from regular 6-nearest-neighboring circular skyrmion arrangement to irregular squeezed skyrmions with less than 6 nearest neighbors when the in-plane anisotropy energy is higher than the interfacial exchange energy as the skyrmion number is maximized. Finally, we demonstrated that the antiferromagnetic underlayer cannot induce skyrmions while the chirality inversion can be achieved on top of an out-of-plane magnetization underlayer with 180◦ domain walls, supporting the experimental findings in FeGe thin film. This compelling advantage offers a fertile playground for exploring emergent phenomena that arise from interfacing magnetic skyrmions with additional functionalities.

Key wordsskyrmion    thin-film    interfacial exchange coupling    in-plane anisotropy    Monte Carlo
收稿日期: 2020-06-29      出版日期: 2020-10-19
Corresponding Author(s): Yong Hu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(2): 23501.
Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy. Front. Phys. , 2021, 16(2): 23501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1000-6
https://academic.hep.com.cn/fop/CN/Y2021/V16/I2/23501
1 A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
https://doi.org/10.1038/natrevmats.2017.31
2 X. Zhang, Y. Zhou, K. Mee Song, T. E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, and S. Woo, Skyrmionelectronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, J. Phys.: Condens. Matter 32(14), 143001 (2020)
https://doi.org/10.1088/1361-648X/ab5488
3 I. Dzyaloshinsky, A thermodynamic theory of “weak”ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
https://doi.org/10.1016/0022-3697(58)90076-3
4 T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120(1), 91 (1960)
https://doi.org/10.1103/PhysRev.120.91
5 A. N. Bogdanov and U. K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87(3), 037203 (2001)
https://doi.org/10.1103/PhysRevLett.87.037203
6 A. Fert and P. M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett. 44(23), 1538 (1980)
https://doi.org/10.1103/PhysRevLett.44.1538
7 A. Fert, Magnetic and transport properties of metallic multilayers, Mater. Sci. Forum 59–60, 439 (1991)
8 A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8(3), 152 (2013)
https://doi.org/10.1038/nnano.2013.29
9 G. Chen, T. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Wu, and A. K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering, Nat. Commun. 4(1), 2671 (2013)
https://doi.org/10.1038/ncomms3671
10 G. Chen, A. T. N’Diaye, Y. Wu, and A. K. Schmid, Ternary superlattice boosting interface-stabilized magnetic chirality, Appl. Phys. Lett. 106(6), 062402 (2015)
https://doi.org/10.1063/1.4907889
11 G. Chen, A. T. N’Diaye, S. P. Kang, H. Y. Kwon, C. Won, Y. Wu, Z. Q. Qiu, and A. K. Schmid, Unlocking Blochtype chirality in ultrathin magnets through uniaxial strain, Nat. Commun. 6(1), 6598 (2015)
https://doi.org/10.1038/ncomms7598
12 M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions, Nat. Commun. 8(1), 308 (2017)
https://doi.org/10.1038/s41467-017-00313-0
13 S. Banerjee, O. Erten, and M. Randeria, Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiOO3 interface, Nat. Phys. 9(10), 626 (2013)
14 D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann, A. Kubetzka, O. Hovorka, H. Fangohr, and R. Wiesendanger, Nanoscale magnetic skyrmions and target states in confined geometries, Phys. Rev. B 99(21), 214408 (2019)
https://doi.org/10.1103/PhysRevB.99.214408
15 L. Sun, R. X. Cao, B. F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, and H. F. Ding, Creating an artificial two-dimensional skyrmion crystal by nanopatterning, Phys. Rev. Lett. 110(16), 167201 (2013)
https://doi.org/10.1103/PhysRevLett.110.167201
16 D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, Realization of ground-state artificial skyrmion lattices at room temperature, Nat. Commun. 6(1), 8462 (2015)
https://doi.org/10.1038/ncomms9462
17 G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett. 106(24), 242404 (2015)
https://doi.org/10.1063/1.4922726
18 A. K. Nandy, N. S. Kiselev, and S. Blügel, Interlayer exchange coupling: A general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale skyrmions, Phys. Rev. Lett. 116(17), 177202 (2016)
https://doi.org/10.1103/PhysRevLett.116.177202
19 M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy, Phys. Rev. B 89(9), 094411 (2014)
20 Y. Hu, X. Chi, X. Li, Y. Liu, and A. Du, Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions, Sci. Rep. 7(1), 16079 (2017)
https://doi.org/10.1038/s41598-017-16348-8
21 S. Z. Lin, A. Saxena, and C. D. Batista, Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy, Phys. Rev. B 91(22), 224407 (2015)
https://doi.org/10.1103/PhysRevB.91.224407
22 M. Vousden, M. Albert, M. Beg, M. A. Bisotti, R. Carey, D. Chernyshenko, D. Cortés-Ortuño, W. Wang, O. Hovorka, C. H. Marrows, and H. Fangohr, Skyrmions in thin films with easy-plane magnetocrystalline anisotropy, Appl. Phys. Lett. 108(13), 132406 (2016)
https://doi.org/10.1063/1.4945262
23 S. Huang and C. Chien, Extended skyrmion phase in epitaxial FeGe (111) thin films, Phys. Rev. Lett. 108(26), 267201 (2012)
https://doi.org/10.1103/PhysRevLett.108.267201
24 Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi, Phys. Rev. Lett. 110(11), 117202 (2013)
https://doi.org/10.1103/PhysRevLett.110.117202
25 P. Bruno, V. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)
https://doi.org/10.1103/PhysRevLett.93.096806
26 Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun. 6(1), 7638 (2015)
https://doi.org/10.1038/ncomms8638
27 J. Rowland, S. Banerjee, and M. Randeria, Skyrmions in chiral magnets with Rashba and Dresselhaus spin–orbit coupling, Phys. Rev. B 93(2), 020404 (2016)
28 S. Rohart and A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii– Moriya interaction, Phys. Rev. B 88(18), 184422 (2013)
https://doi.org/10.1103/PhysRevB.88.184422
29 B. Bian, G. Chen, Q. Zheng, J. Du, H. Lu, J. P. Liu, Y. Hu, and Z. Zhang, Self-assembly of CoPt magnetic nanoparticle arrays and its underlying forces, Small 14(34), 1801184 (2018)
https://doi.org/10.1002/smll.201801184
30 W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles, Science 349(6245), 283 (2015)
https://doi.org/10.1126/science.aaa1442
31 B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, Quantum versus classical annealing of Ising spin glasses, Science 348(6231), 215 (2015)
https://doi.org/10.1126/science.aaa4170
32 R. Li, L. Yu, and Y. Hu, Spin‐glass irreversibility temperature and magnetic stabilization in ferromagnet/spin‐glass bilayers, Phys. Status Solidi Rapid Res. Lett. 13(6), 1900039 (2019)
https://doi.org/10.1002/pssr.201900039
33 X. Chi, R. Li, L. Yu, H. Kou, A. Du, Y. Liu, and Y. Hu, Spin glass properties mapped by coercivity in ferromagnet/ spin glass bilayers, Nanotechnology 30(12), 125702 (2019)
https://doi.org/10.1088/1361-6528/aaf9ef
34 X. D. Chi and Y. Hu, Modulation of skyrmion diameter in centrosymmetric frustrated magnet, Acta Physica Sinica 67, 137502 (2018)
35 N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, Field-dependent size and shape of single magnetic skyrmions, Phys. Rev. Lett. 114(17), 177203 (2015)
https://doi.org/10.1103/PhysRevLett.114.177203
36 S. von Malottki, B. Dupé, P. F. Bessarab, A. Delin, and S. Heinze, Enhanced skyrmion stability due to exchange frustration, Sci. Rep. 7(1), 12299 (2017)
https://doi.org/10.1038/s41598-017-12525-x
37 N. C. Koon, Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces, Phys. Rev. Lett. 78(25), 4865 (1997)
38 H. Du, W. Ning, M. Tian, and Y. Zhang, Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk, Phys. Rev. B 87(1), 014401 (2013)
https://doi.org/10.1103/PhysRevB.87.014401
39 H. Du, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhang, and M. Tian, Edge-mediated skyrmion chain and its collective dynamics in a confined geometry, Nat. Commun. 6(1), 8504 (2015)
https://doi.org/10.1038/ncomms9504
40 X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Near roomtemperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater. 10(2), 106 (2011)
https://doi.org/10.1038/nmat2916
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed