Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (2): 24301   https://doi.org/10.1007/s11467-020-1004-2
  本期目录
Properties of nuclear pastas
Jorge A. López1(), Claudio O. Dorso2(), Guillermo Frank3()
1. Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
2. Departamento de Física, FCEN, Universidad de Buenos Aires, Núñez, Argentina
3. Unidad de Investigación y Desarrollo de las Ingenierías, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Buenos Aires, Argentina
 全文: PDF(12009 KB)  
Abstract

In this review we study the nuclear pastas as they are expected to be formed in neutron star crusts. We start with a study of the pastas formed in nuclear matter (composed of protons and neutrons), we follow with the role of the electron gas on the formation of pastas, and we then investigate the pastas in neutron star matter (nuclear matter embedded in an electron gas).

Nuclear matter (NM) at intermediate temperatures (1 MeV ≲ T ≲ 15 MeV), at saturation and sub-saturation densities, and with proton content ranging from 30% to 50% was found to have liquid, gaseous and liquid–gas mixed phases. The isospin-dependent phase diagram was obtained along with the critical points, and the symmetry energy was calculated and compared to experimental data and other theories. At low temperatures (T ≲ 1 MeV) NM produces crystal-like structures around saturation densities, and pasta-like structures at sub-saturation densities. Properties of the pasta structures were studied with cluster-recognition algorithms, caloric curve, the radial distribution function, the Lindemann coefficient, Kolmogorov statistics, Minkowski functionals; the symmetry energy of the pasta showed a connection with its morphology.

Neutron star matter (NSM) is nuclear matter embedded in an electron gas. The electron gas is included in the calculation by the inclusion of an screened Coulomb potential. To connect the NM pastas with those in neutron star matter (NSM), the role the strength and screening length of the Coulomb interaction have on the formation of the pastas in NM was investigated. Pasta was found to exist even without the presence of the electron gas, but the effect of the Coulomb interaction is to form more defined pasta structures, among other effects. Likewise, it was determined that there is a minimal screening length for the developed structures to be independent of the cell size.

Neutron star matter was found to have similar phases as NM, phase transitions, symmetry energy, structure function and thermal conductivity. Like in NM, pasta forms at around T ≈ 1.5 MeV, and liquid-to-solid phase changes were detected at T ≈ 0.5 MeV. The structure function and the symmetry energy were also found to depend on the pasta structures.

Key wordsnuclear pasta    neutron star matter    nuclear symmetry energy    molecular dynamics    nuclear phase transitions
收稿日期: 2020-07-11      出版日期: 2020-12-01
Corresponding Author(s): Jorge A. López,Claudio O. Dorso,Guillermo Frank   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(2): 24301.
Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas. Front. Phys. , 2021, 16(2): 24301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1004-2
https://academic.hep.com.cn/fop/CN/Y2021/V16/I2/24301
1 D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)
https://doi.org/10.1103/PhysRevLett.50.2066
2 K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)
https://doi.org/10.1016/0375-9474(93)90020-X
3 T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)
https://doi.org/10.1103/PhysRevC.57.655
4 C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)
https://doi.org/10.1103/PhysRevLett.70.379
5 K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic meanfield theory, Phys. Rev. C 55(4), 2092 (1997)
https://doi.org/10.1103/PhysRevC.55.2092
6 T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A663–664, 877c (2000)
https://doi.org/10.1016/S0375-9474(99)00736-8
7 G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 455 (2000)
https://doi.org/10.1016/S0375-9474(00)00197-4
8 R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)
https://doi.org/10.1016/0375-9474(85)90191-5
9 M. Hashimoto, H. Seki, and M. Yamada, Shape of Nuclei in the Crust of Neutron Star, Prog. Theor. Phys. 71(2), 320 (1984)
https://doi.org/10.1143/PTP.71.320
10 P. N. Alcain and C. O. Dorso, The neutrino opacity of neutron rich matter, Nucl. Phys. A 961, 183 (2017)
https://doi.org/10.1016/j.nuclphysa.2017.02.011
11 D. Page, J. M. Lattimer, M. Prakash and A. W. Steiner, Minimal Cooling of Neutron Stars: A New Paradigm, Astrophys. J. Suppl. 155, 623 (2004)
https://doi.org/10.1086/424844
12 B. Schuetrumpf, G. Martínez-Pinedo, M. Afibuzzaman, and H. M. Aktulga, Survey of nuclear pasta in the intermediate-density regime: Shapes and energies, Phys. Rev. C 100(4), 045806 (2019)
https://doi.org/10.1103/PhysRevC.100.045806
13 B. Schuetrumpf, G. Martínez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)
https://doi.org/10.1103/PhysRevC.101.055804
14 G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)
https://doi.org/10.1103/PhysRevC.66.012801
15 C. J. Horowitz, M. A. Perez-García, and J. Piekarewicz, Neutrino-“pasta” scattering: The opacity of nonuniform neutron-rich matter, Phys. Rev. C 69(4), 045804 (2004)
https://doi.org/10.1103/PhysRevC.69.045804
16 B. Schuetrumpf and W. Nazarewicz, Twist-averaged boundary conditions for nuclear pasta Hartree–Fock calculations, Phys. Rev. C 92(4), 045806 (2015)
https://doi.org/10.1103/PhysRevC.92.045806
17 F. J. Fattoyev, C. J. Horowitz, and B. Schuetrumpf, Quantum nuclear pasta and nuclear symmetry energy, Phys. Rev. C 95(5), 055804 (2017)
https://doi.org/10.1103/PhysRevC.95.055804
18 C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, in: “Neutron Star Crust”, Eds. C. A. Bertulani and J. Piekarewicz, Nova Science Publishers, ISBN 978-1620819029 (2012)
19 P. N. Alcain, P. A. Giménez Molinelli, and C. O. Dorso, Beyond nuclear “pasta”: Phase transitions and neutrino opacity of new “pasta” phases, Phys. Rev. C 90(6), 065803 (2014)
https://doi.org/10.1103/PhysRevC.90.065803
20 C. J. Horowitz, M. A. Pérez-García, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)
https://doi.org/10.1103/PhysRevC.70.065806
21 C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)
https://doi.org/10.1103/PhysRevC.86.055805
22 I. Tanihata, Preprint RIKEN-AF-NP-229, 1996; P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010); M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
https://doi.org/10.1103/PhysRevC.85.035201
23 S. Kumar and Y. G. Ma, Investigation of compressibilities using neutron-rich projectiles fragmentation at intermediate energy, Nucl. Phys. A 898, 59 (2013)
https://doi.org/10.1016/j.nuclphysa.2012.12.021
24 P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
https://doi.org/10.1126/science.1078070
25 W. D. Myers and W. J. Swiatecki, The nuclear Thomas–Fermi model, Acta Phys. Pol. B 26, 111 (1995)
26 A. Barrañón, J. Escamilla Roa, and J. A. López, Entropy in the nuclear caloric curve, Phys. Rev. C 69(1), 014601 (2004)
https://doi.org/10.1103/PhysRevC.69.014601
27 P. J. Siemens, Liquid–gas phase transition in nuclear matter, Nature 305(5933), 410 (1983); P. J. Siemens, Macroscopic behaviour of nuclear matter, Nature 336(6195), 110 (1988)
https://doi.org/10.1038/336110a0
28 J. A. López and C. O. Dorso, Lecture Notes on Phase Transitions in Nuclear Matter, World Scientific, 2000
https://doi.org/10.1142/4169
29 H. Müller and B. Serot, Phase transitions in warm, asymmetric nuclear matter, Phys. Rev. C 52(4), 2072 (1995)
https://doi.org/10.1103/PhysRevC.52.2072
30 J. A. López, A. Gaytán Terrazas, and S. Terrazas Porras, Isospin-dependent phase diagram of nuclear matter, Nucl. Phys. A 994, 121664 (2020)
https://doi.org/10.1016/j.nuclphysa.2019.121664
31 See, e.g., , retrieved Sep. 2, 2019
32 J. A. López, E. Ramírez-Homs, R. González, and R. Ravelo, Isospin-asymmetric nuclear matter, Phys. Rev. C 89(2), 024611 (2014)
https://doi.org/10.1103/PhysRevC.89.024611
33 J. A. López and S. Terrazas Porras, Symmetry energy in the liquid–gas mixture, Nucl. Phys. A 957, 312 (2017)
https://doi.org/10.1016/j.nuclphysa.2016.09.012
34 K. Hagel, J. B. Natowitz, and G. Röpke, The equation of state and symmetry energy of low-density nuclear matter, Eur. Phys. J. A 50(2), 39 (2014)
https://doi.org/10.1140/epja/i2014-14039-4
35 S. Kowalski, J. B. Natowitz, S. Shlomo, R. Wada, K. Hagel, J. Wang, T. Materna, Z. Chen, Y. G. Ma, L. Qin, A. S. Botvina, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. E. Masri, Z. Majka, and A. Ono, Experimental determination of the symmetry energy of a low density nuclear gas, Phys. Rev. C 75(1), 014601 (2007)
https://doi.org/10.1103/PhysRevC.75.014601
36 R. Wada, K. Hagel, L. Qin, J. B. Natowitz, Y. G. Ma, G. Röpke, S. Shlomo, A. Bonasera, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, C. Bottosso, M. Barbui, M. R. D. Rodrigues, K. Schmidt, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, and Z. Majka, Nuclear matter symmetry energy at 0.03≤ρ/ρ0≤0.2, Phys. Rev. C 85(6), 064618 (2012)
https://doi.org/10.1103/PhysRevC.85.064618
37 L. W. Chen, C. M. Ko, and B. A. Li, Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models, Phys. Rev. C 76(5), 054316 (2007)
https://doi.org/10.1103/PhysRevC.76.054316
38 E. L. Medeiros and J. Randrup, Thermostatic properties of Seyler–Blanchard nuclei, Phys. Rev. C 45(1), 372 (1992)
https://doi.org/10.1103/PhysRevC.45.372
39 C. J. Horowitz and A. Schwenk, Cluster formation and the virial equation of state of low-density nuclear matter, Nucl. Phys. A 776(1–2), 55 (2006)
https://doi.org/10.1016/j.nuclphysa.2006.05.009
40 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)
https://doi.org/10.1103/PhysRevC.75.014607
41 P. A. Giménez Molinelli, J. I. Nichols, J. A. López, and C. O. Dorso, Simulations of cold nuclear matter at subsaturation densities, Nucl. Phys. A 923, 31 (2014)
https://doi.org/10.1016/j.nuclphysa.2014.01.003
42 A. Vicentini, G. Jacucci, and V. R. Pandharipande, Fragmentation of hot classical drops, Phys. Rev. C 31(5), 1783 (1985); R. J. Lenk and V. R. Pandharipande, Disassembly of hot classical charged drops, Phys. Rev. C 34(1), 177 (1986); R. J. Lenk, T. J. Schlagel, and V. R. Pandharipande, Accuracy of the Vlasov–Nordheim approximation in the classical limit, Phys. Rev. C 42(1), 372 (1990)
https://doi.org/10.1103/PhysRevC.31.1783
43 G. Raciti, R. Bassini, M. Begemann-Blaich, S. Fritz, S. J. Gaff, N. Giudice, C. Gross, G. Immé, I. Iori, U. Kleinevoss, G. J. Kunde, W. D. Kunze, U. Lynen, M. Mahi, T. Möhlenkamp, W. F. J. Müller, B. Ocker, T. Odeh, J. Pochodzalla, G. Riccobene, F. P. Romano, A. Sajia, M. Schnittker, A. Schüttauf, C. Schwarz, W. Seidel, V. Serfling, C. Sfienti, W. Trautmann, A. Trzcinski, G. Verde, A. Wörner, H. Xi, and B. Zwieglinski, A systematic study of the nuclear caloric curve, Nuovo Cim. 111(8-9), 987 (1998)
https://doi.org/10.1007/BF03035986
44 H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phase diagram of nuclear “pasta” and its uncertainties in supernova cores, Phys. Rev. C 77(3), 035806 (2008)
https://doi.org/10.1103/PhysRevC.77.035806
45 C. O. Dorso, G. Frank, and J. A. López, Phase transitions and symmetry energy in nuclear pasta, Nucl. Phys. A 978, 35 (2018)
https://doi.org/10.1016/j.nuclphysa.2018.07.008
46 C. J. Horowitz, Links between heavy ion and astrophysics, Eur. Phys. J. A 30(1), 303 (2006)
https://doi.org/10.1140/epja/i2006-10124-7
47 G. Watanabe and K. Iida, Electron screening in the liquid– gas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)
https://doi.org/10.1103/PhysRevC.68.045801
48 T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba, Nuclear “pasta” structures and the charge screening effect, Phys. Rev. C 72(1), 015802 (2005)
https://doi.org/10.1103/PhysRevC.72.015802
49 C. J. Horowitz, M. A. Perez-Garcia, D. K. Berry, and J. Piekarewicz, Dynamical response of the nuclear “pasta” in neutron star crusts, Phys. Rev. C 72(3), 035801 (2005)
https://doi.org/10.1103/PhysRevC.72.035801
50 J. Piekarewicz and G. T. Sánchez, Proton fraction in the inner neutron-star crust, Phys. Rev. C 85(1), 015807 (2012)
https://doi.org/10.1103/PhysRevC.85.015807
51 J.A. López and E. Ramírez-Homs, Effect of an electron gas on a neutron-rich nuclear pasta, Nuc. Sci. Tech. 26, S20502 (2015)
52 A. S. Schneider, C. J. Horowitz, J. Hughto, and D. K. Berry, Nuclear “pasta” formation, Phys. Rev. C 88(6), 065807 (2013)
https://doi.org/10.1103/PhysRevC.88.065807
53 K. Binder, B. J. Block, P. Virnau, and A. Tröster, Beyond the van der Waals loop: What can be learned from simulating Lennard–Jones fluids inside the region of phase coexistence, Am. J. Phys. 80(12), 1099 (2012)
https://doi.org/10.1119/1.4754020
54 C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan, A. Cumming, and A. S. Schneider, Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars, Phys. Rev. Lett. 114(3), 031102 (2015)
https://doi.org/10.1103/PhysRevLett.114.031102
55 C. Dorso, G. Frank, and J. A. López, Symmetry energy in neutron star matter, Nucl. Phys. A 984, 77 (2019)
https://doi.org/10.1016/j.nuclphysa.2019.01.008
56 J. A. López, J. A. Muñoz, C. O. Dorso, and G. Frank, Machine learning Minkoswki functionals of neutron star crusts, J. Phys. Conf. Ser. (2019); J. A. López and J. A. Muñoz, Analytical expression and neural network study of the symmetry energy, CERN Proc. 1, 29 (2019)
57 P. N. Alcain, Dependencia en el isospín de la ecuación de estado de la materia nuclear, Ph.D. Thesis, Universidad de Buenos Aires, 2019
58 D. Frenkel yB. Smit, Understanding Molecular Simulations, 2nd Ed., Academic Press, 2002
https://doi.org/10.1016/B978-012267351-1/50005-5
59 A. Deibel, A. Cumming, E. F. Brown, and S. Reddy, Latetime cooling of neutron star transients and the physics of the inner crust, Astrophys. J. 839(2), 95 (2017)
https://doi.org/10.3847/1538-4357/aa6a19
60 E. F. Brown, A. Cumming, F. J. Fattoyev, C. J. Horowitz, D. Page, and S. Reddy, Rapid neutrino cooling in the neutron star MXB 1659-29, Phys. Rev. Lett. 120(18), 182701 (2018)
https://doi.org/10.1103/PhysRevLett.120.182701
61 A. S. Schneider, D. K. Berry, M. E. Caplan, C. J. Horowitz, and Z. Lin, Effect of topological defects on “nuclear pasta” observables,Phys. Rev. C 93(6), 065806 (2016)
https://doi.org/10.1103/PhysRevC.93.065806
62 R. Nandi and S. Schramm, Transport properties of the nuclear pasta phase with quantum molecular dynamics, Astrophys. J. 852(2), 135 (2018)
https://doi.org/10.3847/1538-4357/aa9f12
63 C. J. Horowitz, and D. K. Berry, Shear viscosity and thermal conductivity of nuclear “pasta”, Phys. Rev. C 78(3), 035806 (2008)
https://doi.org/10.1103/PhysRevC.78.035806
64 J. M. Dunn, Nanoscale phonon thermal conductivity via molecular dynamics, Ph.D. Thesis, Purdue University, 2016
65 F. Müller–Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)
https://doi.org/10.1063/1.473271
66 A. Barrañón, C. O. Dorso, J. A. López, and J. Morales, LATINO: A semi-classical model to study nuclear fragmentation, Rev. Mex. Fis. 45(suppl. 2), 110 (1999)
67 A. Chernomoretz, L. Gingras, Y. Larochelle, L. Beaulieu, R. Roy, C. St-Pierre, and C. O. Dorso, Quasiclassical model of intermediate velocity particle production in asymmetric heavy ion reactions, Phys. Rev. C 65(5), 054613 (2002)
https://doi.org/10.1103/PhysRevC.65.054613
68 A. Barrañón, C. O. Dorso, and J. A. López, Searching for criticality in nuclear fragmentation, Rev. Mex. Fís. 47(sup. 2), 93 (2001)
69 A. Barrañón, C. O. Dorso, and J. A. López, Time dependence of isotopic temperatures, Nucl. Phys. A 791(1–2), 222 (2007)
https://doi.org/10.1016/j.nuclphysa.2007.04.008
70 A. Barrañón, R. Cárdenas, C. O. Dorso, and J.A. López, The critical exponent of nuclear fragmentation, Acta Physica Hungarica A: Heavy Ion Phys. 17(1), 59 (2003)
https://doi.org/10.1556/APH.17.2003.1.8
71 C. O. Dorso and J. A. López, Selection of critical events in nuclear fragmentation, Phys. Rev. C 64(2), 027602 (2001)
https://doi.org/10.1103/PhysRevC.64.027602
72 A. Barrañón, J. Escamilla Roa, and J. A. López, The transition temperature of the nuclear caloric curve, Braz. J. Phys. 34(3A), 904 (2004)
https://doi.org/10.1590/S0103-97332004000500053
73 C. O. Dorso, C. R. Escudero, M. Ison, and J. A. López, Dynamical aspects of isoscaling, Phys. Rev. C 73(4), 044601 (2006)
https://doi.org/10.1103/PhysRevC.73.044601
74 C. A. Dorso, P. A. G. Molinelli, and J. A. López, Isoscaling and the nuclear EoS, J. Phys. G 38(11), 115101 (2011); C. O. Dorso, P. A. G. Molinelli, and J. A. López, Searching for the origin of isoscaling: Confinement and expansion, Rev. Mex. Phys. S57 (1), 14 (2011)
https://doi.org/10.1088/0954-3899/38/11/115101
75 T. M. Nymand and P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys. 112, 6152 (2000)
https://doi.org/10.1063/1.481216
76 P. N. Alcain, P. A. Giménez Molinelli, J. I. Nichols, and C. O. Dorso, Effect of Coulomb screening length on nuclear “pasta” simulations, Phys. Rev. C 89(5), 055801 (2014)
https://doi.org/10.1103/PhysRevC.89.055801
77 B. L. Holian, A. F. Voter, and R. Ravelo, Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé–Hoover dynamics, Phys. Rev. E 52(3), 2338 (1995)
https://doi.org/10.1103/PhysRevE.52.2338
78 H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72(4), 2384 (1980)
https://doi.org/10.1063/1.439486
79 S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
https://doi.org/10.1063/1.447334
80 J. A. López, S. Terrazas Porras, and A. Rodríguez Gutiérrez, Thermodynamics of neutron-rich nuclear matter, AIP Conf. Proc. 1753, 050001 (2016)
https://doi.org/10.1063/1.4955359
81 B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)
https://doi.org/10.1016/j.physrep.2008.04.005
82 B. A. Li, A. Ramos, G. Verde, and I. Vidana, Topical issue on Nuclear Symmetry Energy, Eur. Phys. J. A 50(2), 9 (2014)
https://doi.org/10.1140/epja/i2014-14009-x
83 J. B. Natowitz, G. Röpke, S. Typel, D. Blaschke, A. Bonasera, K. Hagel, T. Klähn, S. Kowalski, L. Qin, S. Shlomo, R. Wada, and H. H. Wolter, Symmetry energy of dilute warm nuclear matter, Phys. Rev. Lett. 104(20), 202501 (2010)
https://doi.org/10.1103/PhysRevLett.104.202501
84 S. Typel, H. H. Wolter, G. Röpke, and D. Blaschke, Effects of the liquid–gas phase transition and cluster formation on the symmetry energy, Eur. Phys. J. A 50(2), 17 (2014)
https://doi.org/10.1140/epja/i2014-14017-x
85 M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
https://doi.org/10.1103/PhysRevC.85.035201
86 M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R. Stone, Relativistic mean-field hadronic models under nuclear matter constraints, Phys. Rev. C 90(5), 055203 (2014)
https://doi.org/10.1103/PhysRevC.90.055203
87 M. Colonna, V. Baran, M. D. Toro, and H. H. Wolter, Isospin distillation with radial flow: A test of the nuclear symmetry energy, Phys. Rev. C 78(6), 064618 (2008)
https://doi.org/10.1103/PhysRevC.78.064618
88 Y. Zhou, B. Anglin, and A. Strachan, Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics, J. Chem. Phys. 127(18), 184702 (2007)
https://doi.org/10.1063/1.2802366
89 J. Dunn, E. Antillon, J. Maassen, M. Lundstrom, and A. Strachan, Role of energy distribution in contacts on thermal transport in Si: A molecular dynamics study, J. Appl. Phys. 120(22), 225112 (2016)
https://doi.org/10.1063/1.4971254
90 K. H. Lin and A. Strachan, Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths, Phys. Rev. B 87(11), 115302 (2013)
https://doi.org/10.1103/PhysRevB.87.115302
91 F. A. Lindemann, The calculation of molecular vibration frequencies, Phys. Z. 11, 609 (1910)
92 Z. W. Birnbaum, Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size, J. Am. Stat. Assoc. 47(259), 425 (1952)
https://doi.org/10.1080/01621459.1952.10501182
93 E. Gosset, A three-dimensional extended Kolmogorov– Smirnov test as a useful tool in astronomy, Astron. Astrophys. 188, 258 (1987)
94 G. Fasano and A. Franceschini, A multidimensional version of the Kolmogorov–Smirnov test, Mon. Not. R. Astron. Soc. 225(1), 155 (1987)
https://doi.org/10.1093/mnras/225.1.155
95 G. J. Babu and E. D. Feigelson, Astronomical Data Anal ysis Software and Systems XV, Eds. C. Gabriel, et al., ASP Conference Series, 351, 127 (2006)
96 K. Michielsen and H. De Raedt, Integral-geometry morphological image analysis, Phys. Rep. 347(6), 461 (2001)
https://doi.org/10.1016/S0370-1573(00)00106-X
97 B. Schuetrumpf, M. A. Klatt, K. Iida, J. A. Maruhn, K. Mecke, and P. G. Reinhard, Time-dependent Hartree–Fock approach to nuclear “pasta” at finite temperature, Phys. Rev. C 87(5), 055805 (2013)
https://doi.org/10.1103/PhysRevC.87.055805
98 A. Strachan and C. O. Dorso, Time scales in fragmentation, Phys. Rev. C 55(2), 775 (1997); A. Strachan and C. O. Dorso, Fragment recognition in molecular dynamics, Phys. Rev. C 56(2), 995 (1997)
https://doi.org/10.1103/PhysRevC.56.995
99 C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)
https://doi.org/10.1016/0370-2693(93)91158-J
100 P. N. Alcain and C. O. Dorso, Dynamics of fragment formation in neutron-rich matter, Phys. Rev. C 97(1), 015803 (2018)
https://doi.org/10.1103/PhysRevC.97.015803
101 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed