Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (2): 21502   https://doi.org/10.1007/s11467-020-1012-2
  本期目录
Resource reduction for simultaneous generation of two types of continuous variable nonclassical states
Long Tian1,2, Shao-Ping Shi1, Yu-Hang Tian1, Ya-Jun Wang1,2, Yao-Hui Zheng1,2(), Kun-Chi Peng1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(1777 KB)  
Abstract

We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplification (OPA) and subsequent two ring filter cavities (RFCs). The output field of the OPA includes the baseband ω0 and sideband modes ω0±fsubjects to the cavity resonance condition, which are separated by two cascaded RFCs. The first RFC resonates with half the pump wavelength ω0 and the transmitted baseband component is a squeezed state. The reflected fields of the first RFC, including the sideband modes ω0±ωf, are separated by the second RFC, construct Einstein–Podolsky–Rosen entangled state. All freedoms, including the filter cavities for sideband separation and relative phases for the measurements of these sidebands, are actively stabilized. The noise variance of squeezed states is 10.2 dB below the shot noise limit (SNL), the correlation variances of both quadrature amplitude-sum and quadrature phase-difference for the entanglement state are 10.0 dB below the corresponding SNL.

Key wordssqueezed states    entanglement states    continuous variable non-classical states
收稿日期: 2020-08-01      出版日期: 2020-10-27
Corresponding Author(s): Yao-Hui Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(2): 21502.
Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys. , 2021, 16(2): 21502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1012-2
https://academic.hep.com.cn/fop/CN/Y2021/V16/I2/21502
1 S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77(2), 513 (2005)
https://doi.org/10.1103/RevModPhys.77.513
2 S. Liu, Y. Lou, and J. Jing, Orbital angular momentum multiplexed deterministic all-optical quantum teleportation, Nat. Commun. 11(1), 3875 (2020)
https://doi.org/10.1038/s41467-020-17616-4
3 S. Shi, L. Tian, Y. Wang, Y. Zheng, C. Xie, and K. Peng, Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes, Phys. Rev. Lett. 125(7), 070502 (2020)
https://doi.org/10.1103/PhysRevLett.125.070502
4 X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, and K. C. Peng, Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam, Phys. Rev. Lett. 88(4), 047904 (2002)
https://doi.org/10.1103/PhysRevLett.88.047904
5 J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables, Phys. Rev. Lett. 90(16), 167903 (2003)
https://doi.org/10.1103/PhysRevLett.90.167903
6 X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, Orbital–angular-momentum multiplexed continuous-variable entanglement from fourwave mixing in hot atomic vapor, Phys. Rev. Lett. 123(7), 070506 (2019)
https://doi.org/10.1103/PhysRevLett.123.070506
7 S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
https://doi.org/10.1038/nphoton.2015.154
8 R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, Quantum metrology for gravitational wave astronomy, Nat. Commun. 1(1), 121 (2010)
https://doi.org/10.1038/ncomms1122
9 F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, Quantum metrology with parametric amplifierbased photon correlation interferometers, Nat. Commun. 5(1), 3049 (2014)
https://doi.org/10.1038/ncomms4049
10 K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, A quantum enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)
https://doi.org/10.1038/nphys920
11 H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, First long-term application of squeezed states of light in a gravitational-wave observatory, Phys. Rev. Lett. 110(18), 181101 (2013)
https://doi.org/10.1103/PhysRevLett.110.181101
12 T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection, Phys. Rev. Lett. 104(25), 251102 (2010)
https://doi.org/10.1103/PhysRevLett.104.251102
13 A. Thüring, R. Schnabel, H. Lück, and K. Danzmann, Detuned twin-signal-recycling for ultrahigh-precision interferometers, Opt. Lett. 32(8), 985 (2007)
https://doi.org/10.1364/OL.32.000985
14 Q. Zhuang, Z. Zhang, and J. H. Shapiro, Distributed quantum sensing using continuous-variable multipartite entanglement, Phys. Rev. A 97(3), 032329 (2018)
https://doi.org/10.1103/PhysRevA.97.032329
15 S. Liu, Y. Lou, and J. Jing, Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier, Phys. Rev. Lett. 123(11), 113602 (2019)
https://doi.org/10.1103/PhysRevLett.123.113602
16 C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao, Sensing and tracking enhanced by quantum squeezing, Photon. Res. 7(6), A14 (2019)
https://doi.org/10.1364/PRJ.7.000A14
17 R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)
https://doi.org/10.1103/PhysRevLett.86.5188
18 M. V. Larsen, X. S. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, Deterministic generation of a two-dimensional cluster state, Science 366(6463), 369 (2019)
https://doi.org/10.1126/science.aay4354
19 W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, Generation of time-domain-multiplexed twodimensional cluster state, Science 366(6463), 373 (2019)
https://doi.org/10.1126/science.aay2645
20 Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Quantum noise reduction in optical amplification, Phys. Rev. Lett. 70(21), 3239 (1993)
https://doi.org/10.1103/PhysRevLett.70.3239
21 S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4, Appl. Phys. Lett. 89(6), 061116 (2006)
https://doi.org/10.1063/1.2335806
22 Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement, Opt. Express 15(7), 4321 (2007)
https://doi.org/10.1364/OE.15.004321
23 H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, Observation of squeezed light with 10 dB quantum noise reduction, Phys. Rev. Lett. 100(3), 033602 (2008)
https://doi.org/10.1103/PhysRevLett.100.033602
24 M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB, Opt. Express 19(25), 25763 (2011)
https://doi.org/10.1364/OE.19.025763
25 A. Schönbeck, F. Thies, and R. Schnabel, 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm, Opt. Lett. 43(1), 110 (2018)
https://doi.org/10.1364/OL.43.000110
26 K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Squeezing in the audio gravitational-wave detection band, Phys. Rev. Lett. 93(16), 161105 (2004)
https://doi.org/10.1103/PhysRevLett.93.161105
27 T. Eberle, V. Händchen, and R. Schnabel, Stable control of 10 dB two-mode squeezed vacuum states of light, Opt. Express 21(9), 11546 (2013)
https://doi.org/10.1364/OE.21.011546
28 W. H. Zhang, J. R. Wang, Y. H. Zheng, Y. J. Wang, and K. C. Peng, Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator, Appl. Phys. Lett. 115(17), 171103 (2019)
https://doi.org/10.1063/1.5115795
29 W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations, Opt. Lett. 42(21), 4553 (2017)
https://doi.org/10.1364/OL.42.004553
30 X. C. Sun, Y. J. Wang, L. Tian, Y. H. Zheng, and K. C. Peng, Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection, Chin. Opt. Lett. 17(7), 072701 (2019)
https://doi.org/10.3788/COL201917.072701
31 C. Cai, L. Ma, J. Li, H. Guo, K. Liu, H. X. Sun, R. G. Yang, and J. R. Gao, Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain, Photon. Res. 6(5), 479 (2018)
https://doi.org/10.1364/PRJ.6.000479
32 H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117(11), 110801 (2016)
https://doi.org/10.1103/PhysRevLett.117.110801
33 D. F. Walls, Squeezed states of light, Nature 306(5939), 141 (1983)
https://doi.org/10.1038/306141a0
34 J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, Wavelength-multiplexed quantum networks with ultrafast frequency combs, Nat. Photonics 8(2), 109 (2014)
https://doi.org/10.1038/nphoton.2013.340
35 E. H. Huntington, G. N. Milford, C. Robilliard, T. C. Ralph, O. Gl�ckl, U. L. Andersen, S. Lorenz, and G. Leuchs, Demonstration of the spatial separation of the entangled quantum sidebands of an optical field, Phys. Rev. A 71(4), 041802(R) (2005)
https://doi.org/10.1103/PhysRevA.71.041802
36 B. Hage, A. Samblowski, and R. Schnabel, Towards Einstein-Podolsky-Rosen quantum channel multiplexing, Phys. Rev. A 81(6), 062301 (2010)
https://doi.org/10.1103/PhysRevA.81.062301
37 C. Schori, J. L. Sorensen, and E. S. Polzik, Narrow-band frequency tunable light source of continuous quadrature entanglement, Phys. Rev. A 66(3), 033802 (2002)
https://doi.org/10.1103/PhysRevA.66.033802
38 Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement, Nat. Phys. 13(8), 776 (2017)
https://doi.org/10.1038/nphys4118
39 M. J. Yap, P. Altin, T. G. McRae, B. J. J. Slagmolen, R. L. Ward, and D. E. McClelland, Generation and control of frequency-dependent squeezing via Einstein–Podolsky– Rosen entanglement, Nat. Photonics 14(4), 223 (2020)
https://doi.org/10.1038/s41566-019-0582-4
40 J. Südbeck, S. Steinlechner, M. Korobko, and R. Schnabel, Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement, Nat. Photonics 14(4), 240 (2020)
https://doi.org/10.1038/s41566-019-0583-3
41 S. P. Shi, Y. J. Wang, L. Tian, J. R. Wang, X. C. Sun, and Y. H. Zheng, Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator, Opt. Lett. 45(8), 2419 (2020)
https://doi.org/10.1364/OL.385912
42 H. J. Lee, H. Kim, M. Cha, and H. S. Moon, Simultaneous type-0 and type-II spontaneous parametric downconversions in a single periodically poled KTiOPO4 crystal, Appl. Phys. B 108(3), 585 (2012)
https://doi.org/10.1007/s00340-012-5088-4
43 M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb, Opt. Lett. 35(4), 565 (2010)
https://doi.org/10.1364/OL.35.000565
44 M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal, Appl. Phys. Lett. 109(22), 221101 (2016)
https://doi.org/10.1063/1.4968801
45 S. P. Shi, Y. J. Wang, W. H. Yang, Y. H. Zheng, and K. C. Peng, Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced-infrared absorption, Opt. Lett. 43(21), 5411 (2018)
https://doi.org/10.1364/OL.43.005411
46 X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, Dependence of the squeezing and antisqueezing factors of bright squeezed light on the seed beam power and pump beam noise, Opt. Lett. 44(7), 1789 (2019)
https://doi.org/10.1364/OL.44.001789
47 L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2722 (2000)
https://doi.org/10.1103/PhysRevLett.84.2722
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed