Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (6): 62502   https://doi.org/10.1007/s11467-020-1013-1
  本期目录
Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces
Ying Tian1, Xufeng Jing1(), Haiyong Gan2(), Chenxia Li1, Zhi Hong1
1. Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
2. National Institute of Metrology, Beijing 102200, China
 全文: PDF(1528 KB)  
Abstract

To enhance transmission efficiency of Pancharatnam–Berry (PB) phase metasurfaces, multilayer splitring resonators were proposed to develop encoding sequences. As per the generalized Snell’s law, the deflection angle of the PB phase encoding metasurfaces depends on the metasurface period’s size. Therefore, it is impossible to design an infinitesimal metasurface unit; consequently, the continuous transmission scattering angle cannot be obtained. In digital signal processing, this study introduces the Fourier convolution principle on encoding metasurface sequences to freely control the transmitted scattering angles. Both addition and subtraction operations between two different encoding sequences were then performed to achieve the continuous variation of the scattering angle. Furthermore, we established that the Fourier convolution principle can be applied to the checkerboard coded metasurfaces.

Key wordsmetamaterial    metasurface    scattering    Fourier convolution
收稿日期: 2020-07-28      出版日期: 2020-11-03
Corresponding Author(s): Xufeng Jing,Haiyong Gan   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(6): 62502.
Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys. , 2020, 15(6): 62502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1013-1
https://academic.hep.com.cn/fop/CN/Y2020/V15/I6/62502
1 S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
https://doi.org/10.1364/PRJ.7.000246
2 X. Luo, Z. Tan, C. Wang, and J. Cao, A reflectingtype highly efficient terahertz cross-polarization converter based on metamaterials, Chin. Opt. Lett. 17(9), 093101 (2019)
https://doi.org/10.3788/COL201917.093101
3 L. Koirala, C. Park, S. Lee, and D. Choi, Angle tolerant transmissive color filters exploiting metasurface incorporating hydrogenated amorphous silicon nanopillars, Chin. Opt. Lett. 17(8), 082301 (2019)
https://doi.org/10.3788/COL201917.082301
4 T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, and P. Zhou, Deep-learning-based phase control method for tiled aperture coherent beam combining systems, High Power Laser Science and Engineering 7(4), e59 (2019)
https://doi.org/10.1017/hpl.2019.46
5 H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances, J. Appl. Phys. 115(15), 154504 (2014)
https://doi.org/10.1063/1.4869917
6 H. Li, G. Wang, H. Xu, T. Cai, and J. Liang, X-band phase-gradient metasurface for high-gain lens antenna application, IEEE Trans. Antenn. Propag. 63(11), 5144 (2015)
https://doi.org/10.1109/TAP.2015.2475628
7 L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: from fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
https://doi.org/10.1515/nanoph-2017-0118
8 A. Minovich, A. Miroshnichenko, A. Bykov, T. Murzina, D. Neshev, and Y. Kivshar, Functional and nonlinear optical metasurfaces, Laser Photonics Rev. 9(2), 195 (2015)
https://doi.org/10.1002/lpor.201400402
9 H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, and ian, Multichannel high extinction ratio polarized beam splitters based on metasurfaces, Chin. Opt. Lett. 17(5), 052303 (2019)
https://doi.org/10.3788/COL201917.052303
10 M. Huault, D. De Luis, J. Apinaniz, M. De Marco, C. Salgado, N. Gordillo, C. Gutiérrez Neira, J. A. Perez-Hernandez, R. Fedosejevs, G. Gatti, L. Roso, and L. Volpe, A 2D scintillator-based proton detector for high repetition rate experiments, High Power Laser Science and Engineering. 7(4), e60 (2019)
https://doi.org/10.1017/hpl.2019.43
11 M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultrathin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
https://doi.org/10.1002/adom.201801628
12 M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
https://doi.org/10.1002/adma.201907308
13 M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect-based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
https://doi.org/10.1109/TAP.2019.2905777
14 X. Bie, X. Jing, Z. Hong, and C. Li, Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces, Appl. Opt. 57(30), 9070 (2018)
https://doi.org/10.1364/AO.57.009070
15 Z. Ma, S. Hanham, P. Albella, B. Ng, H. Lu, Y. Gong, S. Maier, and M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photonics 3(6), 1010 (2016)
https://doi.org/10.1021/acsphotonics.6b00096
16 T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3(10), e218 (2014)
https://doi.org/10.1038/lsa.2014.99
17 F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at tele-com wavelengths based on plasmonic metasurfaces,Nano Lett. 12(9), 4932 (2012)
https://doi.org/10.1021/nl302516v
18 X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase, Adv. Opt. Mater. 7(3), 1801328 (2019)
https://doi.org/10.1002/adom.201801328
19 Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, Polarization independent and high-efficiency dielectric metasurfaces for visible light, Opt. Express 24(15), 16309 (2016)
https://doi.org/10.1364/OE.24.016309
20 A. Arbabi and A. Faraon, Fundamental limits of ultrathin metasurfaces, Sci. Rep. 7(1), 43722 (2017)
https://doi.org/10.1038/srep43722
21 A. Forouzmand, S. Tao, S. Jafar-Zanjani, J. Cheng, M. M. Salary, and H. Mosallaei, Double split-loop resonators as building blocks of metasurfaces for light manipulation: Bnding, focusing, and flat-top generation, J. Opt. Soc. Am. B 33(7), 1411 (2016)
https://doi.org/10.1364/JOSAB.33.001411
22 D. Zhang, X. Yang, P. Su, J. Luo, H. Chen, J. Yuan, and L. Li, Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna, J. Phys. D Appl. Phys. 50(49), 495104 (2017)
https://doi.org/10.1088/1361-6463/aa9549
23 M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, Thin AMC structure for radar cross-section reduction, IEEE Trans. Antenn. Propag. 55(12), 3630 (2007)
https://doi.org/10.1109/TAP.2007.910306
24 C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H. G. Rubahn, and V. Coello, Plasmonic metasurface Luneburg lens, Photon. Res. 7(10), 1112 (2019)
https://doi.org/10.1364/PRJ.7.001112
25 C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion, Photon. Res. 6(5), B82 (2018)
https://doi.org/10.1364/PRJ.6.000B82
26 B. Du, H. B. Cai, W. S. Zhang, S. Y. Zou, J. Chen, and S. P. Zhu, A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography, High Power Laser Science and Engineering 7(3), e40 (2019)
https://doi.org/10.1017/hpl.2019.30
27 S. Rubin and Y. Fainman, Nonlinear, tunable, and active optical metasurface with liquid film, Advanced Photonics 1(06), 066003 (2019)
https://doi.org/10.1117/1.AP.1.6.066003
28 X. He, F. Lin, F. Liu, and H. Zhang, Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials, Nanomaterials 10(1), 39 (2019)
https://doi.org/10.3390/nano10010039
29 X. He, F. Lin, F. Liu, and W. Shi, Tunable strontium titanate terahertz all-dielectric metamaterials, J. Phys. D Appl. Phys. 53(15), 155105 (2020)
https://doi.org/10.1088/1361-6463/ab6ccc
30 J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
https://doi.org/10.1016/j.physe.2020.114309
31 H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
https://doi.org/10.1515/nanoph-2018-0214
32 Q. Zhang, H. Wang, L. Liu, and S. Teng, Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination, Opt. Express 26(18), 24145 (2018)
https://doi.org/10.1364/OE.26.024145
33 H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
https://doi.org/10.1088/1367-2630/aaafbb
34 L. Liu, H. Wang, Y. Han, X. Lu, H. Lv, and S. Teng, Color filtering and displaying based on hole array, Opt. Commun. 436, 96 (2019)
https://doi.org/10.1016/j.optcom.2018.12.007
35 M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. W. Powell, R. J. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. S. Hicks, O. C. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna, Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions, High Power Laser Science and Engineering 7(1), e14 (2019)
https://doi.org/10.1017/hpl.2018.75
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed