Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (2): 21503   https://doi.org/10.1007/s11467-020-1025-x
  本期目录
Generic security analysis framework for quantum secure direct communication
Zhang-Dong Ye1, Dong Pan1, Zhen Sun3, Chun-Guang Du1, Liu-Guo Yin2,3,4,5(), Gui-Lu Long1,2,4,5()
1. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2. Frontier Science Center for Quantum Information, Beijing 100084, China
3. School of Information and Technology, Tsinghua University, Beijing 100084, China
4. Beijing National Research Center for Information Science and Technology, Beijing 100084, China
5. Beijing Academy of Quantum Information Sciences, Beijing 100193, China
 全文: PDF(1365 KB)  
Abstract

Quantum secure direct communication provides a direct means of conveying secret information via quantum states among legitimate users. The past two decades have witnessed its great strides both theoretically and experimentally. However, the security analysis of it still stays in its infant. Some practical problems in this field to be solved urgently, such as detector efficiency mismatch, side-channel effect and source imperfection, are propelling the birth of a more impeccable solution. In this paper, we establish a new framework of the security analysis driven by numerics where all the practical problems may be taken into account naturally. We apply this framework to several variations of the DL04 protocol considering real-world experimental conditions. Also, we propose two optimizing methods to process the numerical part of the framework so as to meet different requirements in practice. With these properties considered, we predict the robust framework would open up a broad avenue of the development in the field.

Key wordsquantum secure direct communication (QSDC)    practical security analysis    secrecy capacity optimization    detector efficiency mismatch    convex optimization
收稿日期: 2020-09-01      出版日期: 2020-12-14
Corresponding Author(s): Liu-Guo Yin,Gui-Lu Long   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(2): 21503.
Zhang-Dong Ye, Dong Pan, Zhen Sun, Chun-Guang Du, Liu-Guo Yin, Gui-Lu Long. Generic security analysis framework for quantum secure direct communication. Front. Phys. , 2021, 16(2): 21503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1025-x
https://academic.hep.com.cn/fop/CN/Y2021/V16/I2/21503
1 G.-L. Long and X.-S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
2 G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)
https://doi.org/10.1007/s11467-007-0050-3
3 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(5), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
4 C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with highdimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
https://doi.org/10.1103/PhysRevA.71.044305
5 F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
6 F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs, Phys. Lett. A 359(5), 359 (2006)
https://doi.org/10.1016/j.physleta.2006.06.054
7 F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Economical quantum secure direct communication network with single photons, Chin. Phys. 16(12), 3553 (2007)
https://doi.org/10.1088/1009-1963/16/12/001
8 Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)
https://doi.org/10.1007/s11433-019-1450-8
9 P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Measurement-device-independent quantum communication without encryption, Sci. Bull. 63(20), 1345 (2018)
https://doi.org/10.1016/j.scib.2018.09.009
10 Z. Gao, T. Li, and Z. Li, Long-distance measurementdevice- independent quantum secure direct communication, EPL 125(4), 40004 (2019)
https://doi.org/10.1209/0295-5075/125/40004
11 Z. K. Zou, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photons, EPL 131(4), 40005 (2020)
https://doi.org/10.1209/0295-5075/131/40005
12 X. D. Wu, L. Zhou, W. Zhong, and Y. B. Sheng, High-capacity measurement-device-independent quantum secure direct communication, Quantum Inform. Process. 19(4), 354 (2020)
https://doi.org/10.1007/s11128-020-02864-6
13 L. Zhou, Y. B. Sheng, and G. L. Long, Device-independent quantum secure direct communication against collective attacks, Sci. Bull. 65(1), 12 (2020)
https://doi.org/10.1016/j.scib.2019.10.025
14 J. H. Shapiro, Z. Zhang, and F. N. Wong, Secure communication via quantum illumination, Quantum Inform. Process. 13(1), 2171 (2014)
https://doi.org/10.1007/s11128-013-0662-1
15 D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, and S. Lloyd, Quantum enigma machine: Experimentally demonstrating quantum data locking, Phys. Rev. A 94(2), 022315 (2016)
https://doi.org/10.1103/PhysRevA.94.022315
16 J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, Quantum low probability of intercept, J. Opt. Soc. Am. B 36(3), B41 (2019)
https://doi.org/10.1364/JOSAB.36.000B41
17 J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
https://doi.org/10.1038/lsa.2016.144
18 W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
19 F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
20 D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res. 8(9), 1522 (2020)
https://doi.org/10.1364/PRJ.388790
21 S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, Confidential direct communications: A quantum approach using continuous variables, IEEE J. Sel. Top. Quantum Electron. 15(6), 1570 (2009)
https://doi.org/10.1109/JSTQE.2009.2021147
22 C. Liu, K. Pang, Z. Zhao, P. Liao, R. Zhang, H. Song, Y. Cao, J. Du, L. Li, H. Song, Y. Ren, G. Xie, Y. Zhao, J. Zhao, S. M. H. Rafsanjani, A. N. Willner, J. H. Shapiro, R. W. Boyd, M. Tur, and A. E. Willner, Single-end adaptive optics compensation for emulated turbulence in a bidirectional 10-Mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding, Research 2019, 8326701 (2019)
https://doi.org/10.34133/2019/8326701
23 N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, Continuous-variable quantum neural networks, Phys. Rev. Research 1(3), 033063 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033063
24 C. Q. Hu, J. Gao, L. F. Qiao, R. J. Ren, Z. Cao, Z. Q. Yan, Z. Q. Jiao, H. Tang, Z. H. Ma, and X. M. Jin, Experimental test of tracking the king problem, Research 2019, 3474305 (2019)
https://doi.org/10.34133/2019/3474305
25 R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8(1), 22 (2019)
https://doi.org/10.1038/s41377-019-0132-3
26 H. Lu, C. H. F. Fung, X. Ma, and Q. Y. Cai, Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel, Phys. Rev. A 84(4), 042344 (2011)
https://doi.org/10.1103/PhysRevA.84.042344
27 C. I. Henao and R. M. Serra, Practical security analysis of two-way quantum-key-distribution protocols based on nonorthogonal states, Phys. Rev. A 92(5), 052317 (2015)
https://doi.org/10.1103/PhysRevA.92.052317
28 J. Wu, Z. Lin, L. Yin, and G. L. Long, Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Engineering 1(4), e26 (2019)
https://doi.org/10.1002/que2.26
29 P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Numerical approach for unstructured quantum key distribution, Nat. Commun. 7(1), 11712 (2016)
https://doi.org/10.1038/ncomms11712
30 A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numerical key rates for quantum key distribution, Quantum 2, 77 (2018)
https://doi.org/10.22331/q-2018-07-26-77
31 L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
https://doi.org/10.1007/s11467-014-0420-6
32 Z. Cao, Z. Zhang, H. K. Lo, and X. Ma, Discretephaserandomized coherent state source and its application in quantum key distribution, New J. Phys. 17(5), 053014 (2015)
https://doi.org/10.1088/1367-2630/17/5/053014
33 C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)
https://doi.org/10.1103/PhysRevLett.68.557
34 A. D. Wyner, The wire-tap channel, Bell Sys. Tech. J. 54(8), 1355 (1975)
https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
35 G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Automated “plug & play” quantum key distribution, Electron. Lett. 34(22), 2116 (1998)
https://doi.org/10.1049/el:19981473
36 P. J. Coles, L. Yu, V. Gheorghiu, and R. B. Griffiths, Information-theoretic treatment of tripartite systems and quantum channels, Phys. Rev. A 83(6), 062338 (2011)
https://doi.org/10.1103/PhysRevA.83.062338
37 P. J. Coles, Unification of different views of decoherence and discord, Phys. Rev. A 85(4), 042103 (2012)
https://doi.org/10.1103/PhysRevA.85.042103
38 S. Watanabe, R. Matsumoto, and T. Uyematsu, Tomography increases key rates of quantum-key-distribution protocols, Phys. Rev. A 78(4), 042316 (2008)
https://doi.org/10.1103/PhysRevA.78.042316
39 E. Bolduc, G. C. Knee, E. M. Gauger, and J. Leach, Projected gradient descent algorithms for quantum state tomography, npj Quantum Inf. 3(1), 1 (2017)
https://doi.org/10.1038/s41534-017-0043-1
40 I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, in: International conference on machine learning, 2013, p. 1139
41 M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, in: Proceedings of the 30th international conference on machine learning, CONF, 2013, p. 427
42 L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4(10), 686 (2010)
https://doi.org/10.1038/nphoton.2010.214
43 S. Sajeed, P. Chaiwongkhot, J. P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch, Phys. Rev. A 91(6), 062301 (2015)
https://doi.org/10.1103/PhysRevA.91.062301
44 J. Lin, T. Upadhyaya, and N. Lütkenhaus, Asymptotic security analysis of discrete-modulated continuous variable quantum key distribution, Phys. Rev. X 9(4), 041064 (2019)
https://doi.org/10.1103/PhysRevX.9.041064
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed