Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (3): 33504   https://doi.org/10.1007/s11467-020-1031-z
  本期目录
Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability
Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang(), Jian-Yang Wu()
Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
 全文: PDF(2816 KB)  
Abstract

Clathrate hydrates (CHs) are one of the most promising molecular structures in applications of gas capture and storage, and gas separations. Fundamental knowledge of mechanical characteristics of CHs is of crucial importance for assessing gas storage and separations at cold conditions, as well as understanding their stability and formation mechanisms. Here, the tensile mechanical properties of structural I CHs encapsulating a variety of guest species (CH4, NH3, H2S, CH2O, CH3OH, and CH3SH) that have different abilities to form hydrogen (H-) bonds with water molecule are explored by classical molecular dynamics (MD) simulations. All investigated CHs are structurally stable clathrate structures. Basic mechanical properties of CHs including tensile limit and Young’s modulus are dominated by the H-bonding ability of host–guest molecules and the guest molecular polarity. CHs containing small CH4, CH2O and H2S guest molecules that possess weak H-bonding ability are mechanically robust clathrate structures and mechanically destabilized via brittle failure on the (1 0 1) plane. However, those entrapping CH3SH, CH3OH, and NH3 that have strong H-bonding ability are mechanically weak molecular structures and mechanically destabilized through ductile failure as a result of gradual global dissociation of clathrate cages.

Key wordsmechanical properties    clathrate hydrates    hydrogen bonding
收稿日期: 2020-07-01      出版日期: 2020-12-31
Corresponding Author(s): Zhi-Sen Zhang,Jian-Yang Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(3): 33504.
Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability. Front. Phys. , 2021, 16(3): 33504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1031-z
https://academic.hep.com.cn/fop/CN/Y2021/V16/I3/33504
1 T. S. Collett, Energy resource potential of natural gas hydrates, AAPG Bull. 86(11), 1971 (2002)
https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D
2 E. D. Jr Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(6964), 353 (2003)
https://doi.org/10.1038/nature02135
3 K. A. Kvenvolden, Gas hydrates-geological perspective and global change, Rev. Geophys. 31(2), 173 (1993)
https://doi.org/10.1029/93RG00268
4 G. R. Dickens, C. K. Paull, and P. Wallace, Direct mea surement of in situ methane quantities in a large gashydrate reservoir, Nature 385(6615), 426 (1997)
https://doi.org/10.1038/385426a0
5 W. Y. Xu, R. P. Lowell, and E. T. Peltzer, Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions, J. Geophys. Res. Solid Earth 106(B11), 26413 (2001)
https://doi.org/10.1029/2001JB000420
6 K. A. Kvenvolden, Natural gas hydrate occurrence and issues, Ann. N.Y. Acad. Sci. 715(1), 232 (1994)
https://doi.org/10.1111/j.1749-6632.1994.tb38838.x
7 L. E. Zerpa, J. L. Salager, C. A. Koh, E. D. Sloan, and A. K. Sum, Surface chemistry and gas hydrates in flow assurance, Ind. Eng. Chem. Res. 50(1), 188 (2011)
https://doi.org/10.1021/ie100873k
8 A. Kumar, O. S. Kushwaha, P. Rangsunvigit, P. Linga, and R. Kumar, Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: Application in energy storage and transportation, Can. J. Chem. Eng. 94(11), 2160 (2016)
https://doi.org/10.1002/cjce.22583
9 H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci. 118, 208 (2014)
https://doi.org/10.1016/j.ces.2014.07.050
10 A. Kumar, H. P. Veluswamy, R. Kumar, and P. Linga, Direct use of seawater for rapid methane storage via clathrate (sII) hydrates, Appl. Energy 235, 21 (2019)
https://doi.org/10.1016/j.apenergy.2018.10.085
11 H. Komatsu, K. Maruyama, K. Yamagiwa, and H. Tajima, Separation processes for carbon dioxide capture with semiclathrate hydrate slurry based on phase equilibria of CO2++ N2+ tetra-n-butylammonium bromide+ water systems, Chem. Eng. Res. Des. 150, 289 (2019)
https://doi.org/10.1016/j.cherd.2019.08.007
12 D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and B. M. Powell, The ability of small molecules to form clathrate hydrates of structure II, Nature 311(5982), 142 (1984)
https://doi.org/10.1038/311142a0
13 R. L. Christiansen and E. D. Sloan, Mechanisms and kinetics of hydrate formation, Ann. N.Y. Acad. Sci. 715(1), 283 (1994)
https://doi.org/10.1111/j.1749-6632.1994.tb38841.x
14 M. Arjmandi, A. Chapoy, and B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide, J. Chem. Eng. Data 52(6), 2153 (2007)
https://doi.org/10.1021/je700144p
15 B. Kvamme and O. K. Forrisdahl, Polar guest-molecules in natural gas hydrates. Effects of polarity and guest-guestinteractions on the Langmuir-constants, Fluid Phase Equilib. 83, 427 (1993)
https://doi.org/10.1016/0378-3812(93)87047-5
16 B. Kvamme, A. Lund, and T. Hertzberg, The influence of gas–gas interactions on the Langmuir constants for some natural gas hydrates, Fluid Phase Equilib. 90(1), 15 (1993)
https://doi.org/10.1016/0378-3812(93)85002-4
17 D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, J. S. Tse, J. R. Dahn, F. Lee, and L. D. Calvert, Crystallographic studies of clathrate hydrates (Part I), Mol. Cryst. Liq. Cryst. 141(1–2), 141 (1986)
https://doi.org/10.1080/00268948608080205
18 H. Tanaka, Y. Tamai, and K. Koga, Large Thermal Expansivity of Clathrate Hydrates, J. Phys. Chem. B 101(33), 6560 (1997)
https://doi.org/10.1021/jp970511g
19 J. A. Ripmeester and C. I. Ratcliffe, Xenon-129 NMR studies of clathrate hydrates: New guests for structure II and structure H, J. Phys. Chem. 94(25), 8773 (1990)
https://doi.org/10.1021/j100388a006
20 J. X. Liu, Y. J. Yan, J. F. Xu, S. J. Li, G. Chen, and J. Zhang, Replacement micro-mechanism of CH4 hydrate by N2/CO2 mixture revealed byab initio studies, Comput. Mater. Sci. 123, 106 (2016)
https://doi.org/10.1016/j.commatsci.2016.06.025
21 R. Susilo, S. Alavi, I. L. Moudrakovski, P. Englezos, and J. A. Ripmeester, Guest–host hydrogen bonding in structure H clathrate hydrates, ChemPhysChem 10(5), 824 (2009)
https://doi.org/10.1002/cphc.200900024
22 S. Alavi, K. Shin, and J. A. Ripmeester, Molecular dynamics simulations of hydrogen bonding in clathrate hydrates with ammonia and methanol guest molecules, J. Chem. Eng. Data 60(2), 389 (2015)
https://doi.org/10.1021/je5006517
23 L. A. Stern, S. H. Kirby, and W. B. Durham, Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice, Science 273(5283), 1843 (1996)
https://doi.org/10.1126/science.273.5283.1843
24 L. A. Stern, S. H. Kirby, and W. B. Durham, Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties, Energy Fuels 12(2), 201 (1998)
https://doi.org/10.1021/ef970167m
25 T. M. Vlasic, P. D. Servio, and A. D. Rey, Effect of guest size on the mechanical properties and molecular structure of gas hydrates from first-principles, Cryst. Growth Des. 17(12), 6407 (2017)
https://doi.org/10.1021/acs.cgd.7b01072
26 J. H. Jia, Y. F. Liang, T. Tsuji, S. Murata, and T. Matsuoka, Elasticity and stability of clathrate hydrate: Role of guest molecule motions, Sci. Rep. 7(1), 1290 (2017)
https://doi.org/10.1038/s41598-017-01369-0
27 Q. Shi, P. Q. Cao, Z. D. Han, F. L. Ning, H. Gong, Y. Xin, Z. S. Zhang, and J. Y. Wu, Role of guest molecules in the mechanical properties of clathrate hydrates, Cryst. Growth Des. 18(11), 6729 (2018)
https://doi.org/10.1021/acs.cgd.8b01017
28 R. K. McMullan and G. A. Jeffrey, Polyhedral clathrate hydrates (IX): Structure of ethylene oxide hydrate, J. Chem. Phys. 42(8), 2725 (1965)
https://doi.org/10.1063/1.1703228
29 F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum, and K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells, J. Chem. Phys. 138(12), 124504 (2013)
https://doi.org/10.1063/1.4795499
30 J. J. Shieh and T. S. Chung, Gas permeability, diffusivity, and solubility of poly(4-vinylpyridine) film, J. Polym. Sci. B 37(20), 2851 (1999)
https://doi.org/10.1002/(SICI)1099-0488(19991015)37:20<2851::AID-POLB5>3.0.CO;2-U
31 W. H. Lin and T. S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J. Membr. Sci. 186(2), 183 (2001)
https://doi.org/10.1016/S0376-7388(01)00333-7
32 T. Yoshioka, M. Kanezashi, and T. Tsuru, Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AIChE J. 59(6), 2179 (2013)
https://doi.org/10.1002/aic.13966
33 T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, and C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays, Sens. Actuators B Chem. 258, 1099 (2018)
https://doi.org/10.1016/j.snb.2017.12.024
34 J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1477 (2009)
https://doi.org/10.1039/b802426j
35 S. Goel, Z. Wu, S. I. Zones, and E. Iglesia, Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites, J. Am. Chem. Soc. 134(42), 17688 (2012)
https://doi.org/10.1021/ja307370z
36 C. Sun, B. Wen, and B. Bai, Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/C2, CH4/H2S and CH4/N2 separation, Chem. Eng. Sci. 138, 616 (2015)
37 A. Koriakin, Y. H. Kim, and C. H. Lee, Adsorptive desulfurization of natural gas using lithium-modified mesoporous silica, Ind. Eng. Chem. Res. 51(44), 14489 (2012)
https://doi.org/10.1021/ie301066n
38 P. Maksymovych, D. C. Sorescu, D. Dougherty, and J. T. Yates, Surface bonding and dynamical behavior of the CH3SH molecule on Au(111), J. Phys. Chem. B 109(47), 22463 (2005)
https://doi.org/10.1021/jp058154u
39 A. T. Güntner, S. Abegg, K. Wegner, and S. E. Pratsinis, Zeolite membranes for highly selective formaldehyde sensors, Sens. Actuators B Chem. 257, 916 (2018)
https://doi.org/10.1016/j.snb.2017.11.035
40 L. C. Jacobson and V. Molinero, A methane water model for coarse-grained simulations of solutions and clathrate hydrates, J. Phys. Chem. B 114(21), 7302 (2010)
https://doi.org/10.1021/jp1013576
41 J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122(23), 234511 (2005)
https://doi.org/10.1063/1.1931662
42 W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(45), 11225 (1996)
https://doi.org/10.1021/ja9621760
43 B. FrantzDale, S. J. Plimpton and M. S. Shephard, Software components for parallel multiscale simulation: An example with lammps, Eng. Comput. 26(2), 205 (2010)
https://doi.org/10.1007/s00366-009-0156-z
44 N. J. English and J. M. D. MacElroy, Structural and dynamical properties of methane clathrate hydrates, J. Comput. Chem. 24(13), 1569 (2003)
https://doi.org/10.1002/jcc.10303
45 K. Shin, R. Kumar, K. A. Udachin, S. Alavi, and J. A. Ripmeester, Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems, Proc. Natl. Acad. Sci. USA 109(37), 14785 (2012)
https://doi.org/10.1073/pnas.1205820109
46 W. L. Mao, H. Mao, A. F. Goncharov, V. V. Struzhkin, Q. Guo, J. Hu, J. Shu, R. J. Hemley, M. Somayazulu, and Y. Zhao, Hydrogen clusters in clathrate hydrate, Science 297(5590), 2247 (2002)
https://doi.org/10.1126/science.1075394
47 G. A. Jeffrey, Hydrogen-bonding in carbohydrates and hydrate inclusion compounds, Adv. Enzymol. Relat. Areas Mol. Biol. 65, 217 (1992)
https://doi.org/10.1002/9780470123119.ch6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed