Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (3): 33503   https://doi.org/10.1007/s11467-020-1032-y
  本期目录
Compound plasmonic vortex generation based on spiral nanoslits
Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng()
Shandong Provincial Key Laboratory of Optics and Photonic Device & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
 全文: PDF(1526 KB)  
Abstract

In view of wide applications of structured light fields and plasmonic vortices, we propose the concept of compound plasmonic vortex and design several structured plasmonic vortex generators. This kind of structured plasmonic vortex generators consists of multiple spiral nanoslits and they can generate two or more concentric plasmonic vortices. Different from Laguerre–Gaussian beam, the topological charge of the plasmonic vortex in different region is different. Theoretical analysis lays the basis for the design of radially structured plasmonic vortex generators and numerical simulations for several examples confirm the effectiveness of the design principle. The discussions about the interference of vortex fields definite the generation condition for the structured vortex. This work provides a design methodology for generating new vortices using spiral nanoslits and the advanced radially structured plasmonic vortices is helpful for broadening the applications of vortex fields.

Key wordsstructured light    plasmonic vortex    singular optics    metasurface
收稿日期: 2020-07-25      出版日期: 2020-12-18
Corresponding Author(s): Shu-Yun Teng   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(3): 33503.
Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys. , 2021, 16(3): 33503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1032-y
https://academic.hep.com.cn/fop/CN/Y2021/V16/I3/33503
1 H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, Roadmap on structured light, J. Opt. 19(1), 013001 (2017)
https://doi.org/10.1088/2040-8978/19/1/013001
2 A. M. Yao and M. J. Padgett, Orbital angular momentum: Origins, behavior and applications, Adv. Opt. Photonics 3(2), 161 (2011)
https://doi.org/10.1364/AOP.3.000161
3 A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics 7(1), 66 (2015)
https://doi.org/10.1364/AOP.7.000066
4 J. Ng, Z. Lin, and C. Chan, Theory of optical trapping by an optical vortex beam, Phys. Rev. Lett. 104(10), 103601 (2010)
https://doi.org/10.1103/PhysRevLett.104.103601
5 D. Ding, W. Zhang, Z. Zhou, S. Shi, G. Xiang, Z. Wang, Y. Jiang, B. Shi, and G. Guyo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(3), 050502 (2014)
https://doi.org/10.1103/PhysRevLett.114.050502
6 Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
https://doi.org/10.1007/s11467-012-0276-6
7 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391(6668), 667 (1998)
https://doi.org/10.1038/35570
8 A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Opt. Commun. 239(1–3), 61 (2004)
https://doi.org/10.1016/j.optcom.2004.05.058
9 C. Ku, W. Huang, J. Huang, and C. Huang, Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral, IEEE Photonics J. 5(3), 4800409 (2013)
https://doi.org/10.1109/JPHOT.2013.2261802
10 W. Tsai, J. Huang, and C. Huang, Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral, Nano Lett. 14(2), 547 (2014)
https://doi.org/10.1021/nl403608a
11 E. Ostrovsky, K. Cohen, S. Tsesses, B. Gjonaj, and G. Bartal, Nanoscale control over optical singularities, Optica 5(3), 283 (2018)
https://doi.org/10.1364/OPTICA.5.000283
12 W. Tsai, Q. Sun, G. Hu, P. Wu, R. Lin, C. Qiu, K. Ueno, H. Misawa, and D. Tsai, Twisted surface plasmons with spincontrolled gold surfaces, Adv. Opt. Mater. 7(8), 1801060 (2019)
https://doi.org/10.1002/adom.201801060
13 X. Lu, Y. Han, H. Lv, Z. Mou, C. Zhou, S. Wang, and S. Teng, spiral nanoslit and the higher order plasmonic vortex generation, Nanotechnology 31(30), 305201 (2020)
https://doi.org/10.1088/1361-6528/ab8595
14 H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens, Nano Lett. 10(2), 529 (2010)
https://doi.org/10.1021/nl903380j
15 P. Zilio, E. Mari, G. Parisi, F. Tamburini, and F. Romanato, Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses, Opt. Lett. 37(15), 3234 (2012)
https://doi.org/10.1364/OL.37.003234
16 C. Chen, C. Ku, Y. Tai, P. Wei, H. Lin, and C. Huang, Creating optical near-field orbital angular momentum in a gold metasurface, Nano Lett. 15(4), 2746 (2015)
https://doi.org/10.1021/acs.nanolett.5b00601
17 A. Pham, A. Zhao, C. Genet, and A. Drezet, Optical chirality density and flux measured in the local density of states of spiral plasmonic structures, Phys. Rev. A 98(1), 013837 (2018)
https://doi.org/10.1103/PhysRevA.98.013837
18 H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
https://doi.org/10.1088/1367-2630/aaafbb
19 Q. Zhang, P. Li, Y. Li, H. Wang, L. Liu, L. Zhang, and S. Teng, Optical vortex generator with linearly polarized light illumination, J. Nanophotonics 12(01), 016011 (2018)
https://doi.org/10.1117/1.JNP.12.016011
20 S. Moon, H. Jeong, S. Lee, B. Lee, Y. Ryu, and S. Lee, Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarizationindependent plasmonic vortex generation, Opt. Express 27(14), 19119 (2019)
https://doi.org/10.1364/OE.27.019119
21 Z. Guo, Z. Li, J. Zhang, K. Guo, and F. Shen, Review of the functions of archimedes’ spiral metallic nanostructures, Nanomaterial 7(11), 405 (2017)
https://doi.org/10.3390/nano7110405
22 S. Cho, J. Park, S. Lee, H. Kim, and B. Lee, Coupling of spin and angular momentum of light in plasmonic vortex, Opt. Express 20(9), 10083 (2012)
https://doi.org/10.1364/OE.20.010083
23 K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)
https://doi.org/10.1038/nphoton.2015.201
24 Y. Yang, L. Wu, Y. Liu, D. Xie, Z. Jin, J. Li, G. Hu, and C. Qiu, Deuterogenic plasmonic vortices, Nano Lett. 20(9), 6774 (2020)
https://doi.org/10.1021/acs.nanolett.0c02699
25 H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
https://doi.org/10.1515/nanoph-2018-0214
26 S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization sates based on a metasurface, Photon. Res. 7(3), 246 (2019)
https://doi.org/10.1364/PRJ.7.000246
27 E. D. Palik, Handbook of Optical Constants of Solids, Academic, 1998
28 Z. Mou, X. Lu, H. Lv, S. Han, Q. Yue, S. Wang, and S. Teng, Metasurface array illuminator based on Fresnel holography, Opt. Las. Engin. 131, 106146 (2020)
https://doi.org/10.1016/j.optlaseng.2020.106146
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed