Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space
Zhen-Ming Xu (许震明)1,2,3,4()
1. Institute of Modern Physics, Northwest University, Xi’an 710127, China 2. School of Physics, Northwest University, Xi’an 710127, China 3. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China 4. Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China
In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.
. [J]. Frontiers of Physics, 2021, 16(2): 24502.
Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space. Front. Phys. , 2021, 16(2): 24502.
S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975); Errutum, Commun. Math. Phys. 46, 206 (1976) https://doi.org/10.1007/BF01608497
2
J. M. Bardeen, B. Carter, and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973) https://doi.org/10.1007/BF01645742
S. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87(4), 577 (1983) https://doi.org/10.1007/BF01208266
D. Kubiznak, R. B. Mann, and M. Teo, Black hole chemistry: Thermodynamics with Lambda, Class. Quantum Gravity 34(6), 063001 (2017) https://doi.org/10.1088/1361-6382/aa5c69
N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume, Galaxies 2(1), 89 (2014) https://doi.org/10.3390/galaxies2010089
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M. B. Sedra, and A. Segui, On heat properties of AdS black holes in higher dimensions, J. High Energy Phys. 05(5), 149 (2015) https://doi.org/10.1007/JHEP05(2015)149
14
S. W. Wei and Y. X. Liu, Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes, Phys. Rev. D 91(4), 044018 (2015) https://doi.org/10.1103/PhysRevD.91.044018
15
R.-G. Cai, L.-M. Cao, L. Li, and R.-Q. Yang, P–Vcriticality in the extended phase space of GB black holes in AdS space, J. High Energy Phys. 2013, 5 (2013) https://doi.org/10.1007/JHEP09(2013)005
16
W. Xu, H. Xu, and L. Zhao, Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C 74(7), 2970 (2014) https://doi.org/10.1140/epjc/s10052-014-2970-8
17
S. H. Hendi, S. Panahiyan, B. E. Panah, M. Faizal, and M. Momennia, Critical behavior of charged black holes in Gauss–Bonnet gravity’s rainbow, Phys. Rev. D 94(2), 024028 (2016) https://doi.org/10.1103/PhysRevD.94.024028
18
M. Cvetič, S. Nojiri, and S. D. Odintsov, 0, S. Nojiri, and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss– Bonnet gravity, Nucl. Phys. B 628(1–2), 295 (2002) https://doi.org/10.1016/S0550-3213(02)00075-5
19
S. W. Wei and Y. X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes, Phys. Rev. D 87(4), 044014 (2013) https://doi.org/10.1103/PhysRevD.87.044014
20
D. C. Zou, Y. Q. Liu, and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90(4), 044063 (2014) https://doi.org/10.1103/PhysRevD.90.044063
21
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, and M. B. Sedra, Maxwell’s equal-area law for Gauss–Bonnet anti-de Sitter black holes, Eur. Phys. J. C 75(2), 71 (2015) https://doi.org/10.1140/epjc/s10052-015-3299-7
Y. G. Miao and Z. M. Xu, Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS5 spacetime, Eur. Phys. J. C 77(6), 403 (2017)
24
Y. G. Miao and Z. M. Xu, Thermodynamics of noncommutative high-dimensional AdS black holes with non- Gaussian smeared matter distributions, Eur. Phys. J. C 76(4), 217 (2016) https://doi.org/10.1140/epjc/s10052-016-4073-1
25
A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22(03), 1350010 (2013) https://doi.org/10.1142/S0218271813500107
26
M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84(2), 024037 (2011) https://doi.org/10.1103/PhysRevD.84.024037
G. Ruppeiner, Thermodynamic curvature and black holes, in: S. Bellucci (Eds.), Breaking of supersymmetry and ultraviolet divergences in extended supergravity, Springer Proceedings in Physics 153, 179 (2014), arXiv: 1309.0901 [gr-qc] https://doi.org/10.1007/978-3-319-03774-5_10
S. W. Wei and Y. X. Liu, Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition, Phys. Rev. Lett. 115(11), 111302 (2015); Erratum, Phys. Rev. Lett. 116(16), 169903 (2016) https://doi.org/10.1103/PhysRevLett.116.169903
32
S. W. Wei, Y. X. Liu, and R. B. Mann, Repulsive interactions and universal properties of charged anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123(7), 071102 (2019) https://doi.org/10.1103/PhysRevLett.123.071103
33
Y. G. Miao and Z. M. Xu, Thermal molecular potential among micromolecules in charged AdS black holes, Phys. Rev. D 98(4), 044001 (2018) https://doi.org/10.1103/PhysRevD.98.044001
34
Z. M. Xu, B. Wu, and W. L. Yang, Ruppeiner thermodynamic geometry for the Schwarzschild AdS black hole, Phys. Rev. D 101(2), 024018 (2020) https://doi.org/10.1103/PhysRevD.101.024018
35
A. Ghosh and C. Bhamidipati, Thermodynamic geometry for charged Gauss–Bonnet black holes in AdS spacetimes, Phys. Rev. D 101(4), 046005 (2020) https://doi.org/10.1103/PhysRevD.101.046005
36
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Holography, thermodynamics, and fluctuations of charged AdS black holes, Phys. Rev. D 60(10), 104026 (1999) https://doi.org/10.1103/PhysRevD.60.104026
37
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Charged AdS black holes and catastrophic holography,Phys. Rev. D 60(6), 064018 (1999) https://doi.org/10.1103/PhysRevD.60.064018
A. Dehyadegari, A. Sheykhi, and A. Montakhab, Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space, Phys. Lett. B 768, 235 (2017) https://doi.org/10.1016/j.physletb.2017.02.064
40
Z.-M. Xu, B. Wu, and W.-L. Yang, The fine micro-thermal structures for the Reissner–Nordström black hole, Chin. Phys. C 44(9), 095106 (2020) https://doi.org/10.1088/1674-1137/44/9/095106
41
H. Yazdikarimi, A. Sheykhi, and Z. Dayyani, Critical behavior of Gauss–Bonnet black holes via an alternative phase space, Phys. Rev. D 99(12), 124017 (2019) https://doi.org/10.1103/PhysRevD.99.124017
42
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Relativ. Gravit. 35(10), 1733 (2003) https://doi.org/10.1023/A:1026058111582
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Flat information geometries in black hole thermodynamics, Gen. Relativ. Gravit. 38(8), 1305 (2006) https://doi.org/10.1007/s10714-006-0306-1
S. Gunasekaran, D. Kubiznak, and R. B. Mann, Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization, J. High Energy Phys. 11(11), 110 (2012) https://doi.org/10.1007/JHEP11(2012)110
Y. G. Miao and Z. M. Xu, Thermodynamics of Horndeski black holes with non-minimal derivative coupling, Eur. Phys. J. C 76(11), 638 (2016) https://doi.org/10.1140/epjc/s10052-016-4482-1
49
Y.-G. Miao and Z.-M. Xu, Phase transition and entropy inequality of noncommutative black holes in a new extended phase space, J. Cosmol. Astropart. Phys. 03, 046 (2017) https://doi.org/10.1088/1475-7516/2017/03/046
50
B. P. Dolan, Intrinsic curvature of thermodynamic potentials for black holes with critical points, Phys. Rev. D 92(4), 044013 (2015) https://doi.org/10.1103/PhysRevD.92.044013