Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 43200   https://doi.org/10.1007/s11467-020-1041-x
  本期目录
Machine learning approach for the prediction and optimization of thermal transport properties
Yulou Ouyang1, Cuiqian Yu1, Gang Yan1,2(), Jie Chen1()
1. Center for Phononics and Thermal Energy Science, China–EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
 全文: PDF(2563 KB)  
Abstract

Traditional simulation methods have made prominent progress in aiding experiments for understanding thermal transport properties of materials, and in predicting thermal conductivity of novel materials. However, huge challenges are also encountered when exploring complex material systems, such as formidable computational costs. As a rising computational method, machine learning has a lot to offer in this regard, not only in speeding up the searching and optimization process, but also in providing novel perspectives. In this work, we review the state-of-the-art studies on material’s thermal properties based on machine learning technique. First, the basic principles of machine learning method are introduced. We then review applications of machine learning technique in the prediction and optimization of material’s thermal properties, including thermal conductivity and interfacial thermal resistance. Finally, an outlook is provided for the future studies.

Key wordsmachine learning    thermal transport    optimization    prediction
收稿日期: 2020-10-07      出版日期: 2021-03-16
Corresponding Author(s): Gang Yan,Jie Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 43200.
Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys. , 2021, 16(4): 43200.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1041-x
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/43200
1 Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860, 1 (2020)
https://doi.org/10.1016/j.physrep.2020.03.001
2 X. Xu, J. Zhou, and J. Chen, Thermal transport in conductive polymer-based materials, Adv. Funct. Mater. 30(8), 1904704 (2020)
https://doi.org/10.1002/adfm.201904704
3 Z. Zhang and J. Chen, Thermal conductivity of nanowires, Chin. Phys. B 27(3), 035101 (2018)
https://doi.org/10.1088/1674-1056/27/3/035101
4 X. Xu, J. Chen, J. Zhou, and B. Li, Thermal conductivity of polymers and their nanocomposites, Adv. Mater. 30(17), 1705544 (2018)
https://doi.org/10.1002/adma.201705544
5 Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz, and J. Chen, Hydrodynamic phonon transport in bulk crystalline polymers, Phys. Rev. B 102(19), 195302 (2020)
https://doi.org/10.1103/PhysRevB.102.195302
6 R. J. McGlen, R. Jachuck, and S. Lin, Integrated thermal management techniques for high power electronic devices, Appl. Therm. Eng. 24(8–9), 1143 (2004)
https://doi.org/10.1016/j.applthermaleng.2003.12.029
7 S. G. Kandlikar and C. N. II Hayner, Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices— Thermal Design and Manufacturing Considerations, Heat Transf. Eng. 30(12), 918 (2009)
https://doi.org/10.1080/01457630902837343
8 J. P. Rojas, D. Singh, S. B. Inayat, G. A. T. Sevilla, H. M. Fahad, and M. M. Hussain, Review — Micro and nano-engineering enabled new generation of thermoelectric generator devices and applications, ECS J. Solid State Sci. Technol. 6(3), N3036 (2017)
https://doi.org/10.1149/2.0081703jss
9 Y. Ouyang, Z. Zhang, D. Li, J. Chen, and G. Zhang, Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance, Ann. Phys. (Berlin) 531(4), 1800437 (2019)
https://doi.org/10.1002/andp.201800437
10 L. Shi, J. Chen, G. Zhang, and B. Li, Thermoelectric figure of merit in Ga-doped [0001] ZnO nanowires, Phys. Lett. A 376(8–9), 978 (2012)
https://doi.org/10.1016/j.physleta.2011.12.040
11 X. L. Zhu, P. F. Liu, J. Zhang, P. Zhang, W. X. Zhou, G. Xie, and B. T. Wang, Monolayer SnP3: An excellent p-type thermoelectric material, Nanoscale 11(42), 19923 (2019)
https://doi.org/10.1039/C9NR04726C
12 D. Alexeev, J. Chen, J. H. Walther, K. P. Giapis, P. Angelikopoulos, and P. Koumoutsakos, Kapitza resistance between few-layer graphene and water: Liquid layering effects, Nano Lett. 15(9), 5744 (2015)
https://doi.org/10.1021/acs.nanolett.5b03024
13 Y. Ma, Z. Zhang, J. Chen, K. Sääskilahti, S. Volz, and J. Chen, Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water, Carbon 135, 263 (2018)
https://doi.org/10.1016/j.carbon.2018.04.030
14 X. Liu, J. Gao, G. Zhang, and Y. W. Zhang, Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance, Nanoscale 10(42), 19854 (2018)
https://doi.org/10.1039/C8NR06110F
15 J. Wang, Z. Zhang, R. Shi, B. N. Chandrashekar, N. Shen, H. Song, N. Wang, J. Chen, and C. Cheng, Impact of nanoscale roughness on heat transport across the solid–solid interface, Adv. Mater. Interfaces 7(4), 1901582 (2020)
https://doi.org/10.1002/admi.201901582
16 M. Zhou, H. Bi, T. Lin, X. Lü, D. Wan, F. Huang, and J. Lin, Heat transport enhancement of thermal energy storage material using graphene/ceramic composites, Carbon 75, 314 (2014)
https://doi.org/10.1016/j.carbon.2014.04.009
17 F. Gong, Z. Ding, Y. Fang, C.J. Tong, D. Xia, Y. Lv, B. Wang, D. V. Papavassiliou, J. Liao, and M. Wu, Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling, ACS Appl. Mater. Interfaces 10(17), 14614 (2018)
https://doi.org/10.1021/acsami.7b19582
18 C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
https://doi.org/10.1063/1.2951600
19 J. Doty, K. Yerkes, L. Byrd, J. Murthy, A. Alleyne, M. Wolff, S. Heister, and T. S. Fisher, Dynamic thermal management for aerospace technology: Review and outlook, J. Thermophys. Heat Transfer 31(1), 86 (2017)
https://doi.org/10.2514/1.T4701
20 P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang, and J. Chen, Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact, J. Appl. Phys. 127(23), 235101 (2020)
https://doi.org/10.1063/5.0004484
21 A. L. Moore and L. Shi, Emerging challenges and materials for thermal management of electronics, Mater. Today 17(4), 163 (2014)
https://doi.org/10.1016/j.mattod.2014.04.003
22 Z. Zhang, J. Chen, and B. Li, Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals, Nanoscale 9(37), 14208 (2017)
https://doi.org/10.1039/C7NR04944G
23 M. Soltanimehr and M. Afrand, Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems, Appl. Therm. Eng. 105, 716 (2016)
https://doi.org/10.1016/j.applthermaleng.2016.03.089
24 Z. Zhang, S. Hu, T. Nakayama, J. Chen, and B. Li, Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes, Carbon 139, 289 (2018)
https://doi.org/10.1016/j.carbon.2018.06.057
25 G. Xie, Z. Ju, K. Zhou, X. Wei, Z. Guo, Y. Cai, and G. Zhang, Ultra-low thermal conductivity of twodimensional phononic crystals in the incoherent regime, npj Comput. Mater. 4, 1 (2018)
https://doi.org/10.1038/s41524-018-0076-9
26 Z. Zhang, S. Hu, Q. Xi, T. Nakayama, S. Volz, J. Chen, and B. Li, Tunable phonon nanocapacitor built by carbon schwarzite based host–guest system, Phys. Rev. B 101(8), 081402 (2020)
https://doi.org/10.1103/PhysRevB.101.081402
27 S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen, Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures, Nanoscale 11(24), 11839 (2019)
https://doi.org/10.1039/C9NR02548K
28 Y. Ouyang, Z. Zhang, Q. Xi, P. Jiang, W. Ren, N. Li, J. Zhou, and J. Chen, Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene, RSC Adv. 9(57), 33549 (2019)
https://doi.org/10.1039/C9RA07563A
29 M. Yang, Y. Zhu, X. Wang, Q. Wang, L. Ai, L. Zhao, and Y. Chu, A novel low thermal conductivity thermal barrier coating at super high temperature, Appl. Surf. Sci. 497, 143774 (2019)
https://doi.org/10.1016/j.apsusc.2019.143774
30 M. Arai, H. Ochiai, and T. Suidzuc, A novel low-thermalconductivity plasma-sprayed thermal barrier coating controlled by large pores, Surf. Coat. Tech. 285, 120 (2016)
https://doi.org/10.1016/j.surfcoat.2015.11.022
31 M. Bharti, A. Singh, S. Samanta, and D. K. Aswal, Conductive polymers for thermoelectric power generation, Prog. Mater. Sci. 93, 270 (2018)
https://doi.org/10.1016/j.pmatsci.2017.09.004
32 D. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008)
https://doi.org/10.1063/1.2907977
33 Z. Zhang, S. Hu, J. Chen, and B. Li, Hexagonal boron nitride: A promising substrate for graphene with high heat dissipation, Nanotechnology 28(22), 225704 (2017)
https://doi.org/10.1088/1361-6528/aa6e49
34 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
35 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87(21), 215502 (2001)
https://doi.org/10.1103/PhysRevLett.87.215502
36 L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, J. Heat Transfer 125(5), 881 (2003)
https://doi.org/10.1115/1.1597619
37 D. G. Cahill, M. Katiyar, and J. R. Abelson, Thermal conductivity of a-Si: H thin films, Phys. Rev. B 50(9), 6077 (1994)
https://doi.org/10.1103/PhysRevB.50.6077
38 D. G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance, Rev. Sci. Instrum. 75(12), 5119 (2004)
https://doi.org/10.1063/1.1819431
39 C. C. Williams and H. K. Wickramasinghe, Scanning thermal profiler, Appl. Phys. Lett. 49(23), 1587 (1986)
https://doi.org/10.1063/1.97288
40 X. Xu, J. Chen, and B. Li, Phonon thermal conduction in novel 2D materials, J. Phys.: Condens. Matter 28(48), 483001 (2016)
https://doi.org/10.1088/0953-8984/28/48/483001
41 A. J. H. McGaughey, A. Jain, and H. Y. Kim, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation, J. Appl. Phys. 125(1), 011101 (2019)
https://doi.org/10.1063/1.5064602
42 H. Bao, J. Chen, X. Gu, and B. Cao, A review of simulation methods in micro/nanoscale heat conduction, ES Energy Environ. 1, 16 (2018)
https://doi.org/10.30919/esee8c149
43 J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
44 Y. Liu, W. Hong, and B. Cao, Machine learning for predicting thermodynamic properties of pure fluids and their mixtures, Energy 188, 116091 (2019)
https://doi.org/10.1016/j.energy.2019.116091
45 Y. J. Wu, L. Fang, and Y. Xu, Predicting interfacial thermal resistance by machine learning, npj Comput. Mater. 5, 56 (2019)
https://doi.org/10.1038/s41524-019-0193-0
46 A. Zendehboudi and R. Saidur, A reliable model to estimate the effective thermal conductivity of nanofluids, Heat Mass Transf. 55(2), 397 (2019)
https://doi.org/10.1007/s00231-018-2420-5
47 X. Gu and C. Y. Zhao, Thermal conductivity of singlelayer MoS2(1−x)Se2x alloys from molecular dynamics simulations with a machine-learning-based interatomic potential, Comput. Mater. Sci. 165, 74 (2019)
https://doi.org/10.1016/j.commatsci.2019.04.025
48 G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91(4), 045002 (2019)
https://doi.org/10.1103/RevModPhys.91.045002
49 A. O. Oliynyk and J. M. Buriak, Virtual issue on machine-learning discoveries in materials science, Chem. Mater. 31(20), 8243 (2019)
https://doi.org/10.1021/acs.chemmater.9b03854
50 G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, From DFT to machine learning: recent approaches to materials science — a review, J. Phys.: Mater 2(3), 032001 (2019)
https://doi.org/10.1088/2515-7639/ab084b
51 J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, Recent advances and applications of machine learning in solid-state materials science, npj Comput. Mater. 5, 83 (2019)
https://doi.org/10.1038/s41524-019-0221-0
52 J. Graser, S. K. Kauwe, and T. D. Sparks, Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons, Chem. Mater. 30(11), 3601 (2018)
https://doi.org/10.1021/acs.chemmater.7b05304
53 S. K. Kauwe, J. Graser, R. Murdock, and T. D. Sparks, Can machine learning find extraordinary materials? Comput. Mater. Sci. 174, 109498 (2020)
https://doi.org/10.1016/j.commatsci.2019.109498
54 H. Zhang, K. Hippalgaonkar, T. Buonassisi, O. M. Løvvik, E. Sagvolden, and D. Ding, Machine learning for novel thermal-materials discovery: Early successes, opportunities, and challenges, ES Energy Environ. 2, 1 (2018)
https://doi.org/10.30919/esee8c209
55 D. H. Kim, T. J. Y. Kim, X. Wang, M. Kim, Y.-J. Quan, J. W. Oh, S.-H. Min, H. Kim, B. Bhandari, I. Yang, and S.-H. Ahn, Smart machining process using machine learning: A review and perspective on machining industry, Int. J. Precis. Eng. Manuf. Green Tech. 5, 555 (2018)
https://doi.org/10.1007/s40684-018-0057-y
56 S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P. Russo, J. J. Klein, A. J. Hickey, and A. M. Clark, Exploiting machine learning for end-to-end drug discovery and development, Nat. Mater. 18(5), 435 (2019)
https://doi.org/10.1038/s41563-019-0338-z
57 W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5(4), 115 (1943)
https://doi.org/10.1007/BF02478259
58 F. Rosenblatt, The Perceptron, A Perceiving and Recognizing Automaton Project Para, Cornell Aeronautical Laboratory, Buffalo, NY, 1957
59 S. B. Kotsiantis, Supervised machine learning — a review of classification techniques, Informatica (Vilnius) 31, 249 (2007)
60 S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, Machine learning: A review of classification and combining techniques, Artif. Intell. Rev. 26(3), 159 (2006)
https://doi.org/10.1007/s10462-007-9052-3
61 M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, A review of relational machine learning for knowledge graphs, Proc. IEEE 104(1), 11 (2016)
https://doi.org/10.1109/JPROC.2015.2483592
62 C. Voyant, G. Notton, S. Kalogirou, M. L. Nivet, C. Paoli, F. Motte, and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renew. Energy 105, 569 (2017)
https://doi.org/10.1016/j.renene.2016.12.095
63 M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349(6245), 255 (2015)
https://doi.org/10.1126/science.aaa8415
64 K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
65 L. Chen, H. Tran, R. Batra, C. Kim, and R. Ramprasad, Machine learning models for the lattice thermal conductivity prediction of inorganic materials, Comput. Mater. Sci. 170, 109155 (2019)
https://doi.org/10.1016/j.commatsci.2019.109155
66 F. H. Allen, The Cambridge Structural Database: A quarter of a million crystal structures and rising, Acta Crystallogr. B 58(3), 380 (2002)
https://doi.org/10.1107/S0108768102003890
67 F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, The Protein Data Bank: A computer‐based archival file for macromolecular structures, Eur. J. Biochem. 80(2), 319 (1977)
https://doi.org/10.1111/j.1432-1033.1977.tb11885.x
68 S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, Crystallography Open Database — an open-access collection of crystal structures, J. Appl. Cryst. 42(4), 726 (2009)
https://doi.org/10.1107/S0021889809016690
69 A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design, Acta Crystallogr. B 58(3), 364 (2002)
https://doi.org/10.1107/S0108768102006948
70 Y. Xu, M. Yamazaki, and P. Villars, Inorganic materials database for exploring the nature of material, Jpn. J. Appl. Phys. 50(11S), 11RH02 (2011)
https://doi.org/10.7567/JJAP.50.11RH02
71 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1(1), 011002 (2013)
https://doi.org/10.1063/1.4812323
72 S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initiocalculations, Comput. Mater. Sci. 58, 227 (2012)
https://doi.org/10.1016/j.commatsci.2012.02.002
73 N. E. R. Zimmermann and A. Jain, Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity, RSC Adv. 10(10), 6063 (2020)
https://doi.org/10.1039/C9RA07755C
74 L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami, S. A. Ghasemi, A. Sadeghi, M. Grauzinyte, C. Wolverton, and S. Goedecker, A fingerprint based metric for measuring similarities of crystalline structures, J. Chem. Phys. 144(3), 034203 (2016)
https://doi.org/10.1063/1.4940026
75 A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, and I. Tanaka, Representation of compounds for machinelearning prediction of physical properties, Phys. Rev. B 95(14), 144110 (2017)
https://doi.org/10.1103/PhysRevB.95.144110
76 J. Wang, A. Yousefzadi Nobakht, J. D. Blanks, D. Shin, S. Lee, A. Shyam, H. Rezayat, and S. Shin, Machine learning for thermal transport analysis of aluminum alloys with precipitate morphology, Adv. Theory Simul. 2(4), 1800196 (2019)
https://doi.org/10.1002/adts.201800196
77 R. M. Balabin and E. I. Lomakina, Support vector machine regression (LS-SVM) — an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys. Chem. Chem. Phys. 13(24), 11710 (2011)
https://doi.org/10.1039/c1cp00051a
78 H. Kurt and M. Kayfeci, Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks, Appl. Energy 86(10), 2244 (2009)
https://doi.org/10.1016/j.apenergy.2008.12.020
79 J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half- Heusler semiconductors via high-throughput materials modeling, Phys. Rev. X 4(1), 011019 (2014)
https://doi.org/10.1103/PhysRevX.4.011019
80 M. J. Peet, H. S. Hasan, and H. K. D. H. Bhadeshia, Prediction of thermal conductivity of steel, Int. J. Heat Mass Transf. 54(11–12), 2602 (2011)
https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.025
81 S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, and J. Shiomi, Designing nanostructures for phonon transport via bayesian optimization, Phys. Rev. X 7(2), 021024 (2017)
https://doi.org/10.1103/PhysRevX.7.021024
82 T. Zhou, Z. Song, and K. Sundmacher, Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design, Engineering 5(6), 1017 (2019)
https://doi.org/10.1016/j.eng.2019.02.011
83 Y. Liu, T. Zhao, W. Ju, and S. Shi, Materials discovery and design using machine learning, Journal of Materiomics 3(3), 159 (2017)
https://doi.org/10.1016/j.jmat.2017.08.002
84 S. Ju and J. Shiomi, Materials informatics for heat transfer: Recent progresses and perspectives, Nanoscale Microscale Thermophys. Eng. 23(2), 157 (2019)
https://doi.org/10.1080/15567265.2019.1576816
85 T. Ishikawa, T. Miyake, and K. Shimizu, Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds, Phys. Rev. B 100(17), 174506 (2019)
https://doi.org/10.1103/PhysRevB.100.174506
86 C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. P. Ong, A critical review of machine learning of energy materials, Adv. Energy Mater. 10(8), 1903242 (2020)
https://doi.org/10.1002/aenm.201903242
87 E. Minamitani, M. Ogura, and S. Watanabe, Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential, Appl. Phys. Express 12(9), 095001 (2019)
https://doi.org/10.7567/1882-0786/ab36bc
88 H. D. Landahl, W. S. McCulloch, and W. Pitts, A statistical consequence of the logical calculus of nervous nets, Bull. Math. Biophys. 5(4), 135 (1943)
https://doi.org/10.1007/BF02478260
89 J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98(14), 146401 (2007)
https://doi.org/10.1103/PhysRevLett.98.146401
90 A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials, J. Comput. Phys. 285, 316 (2015)
https://doi.org/10.1016/j.jcp.2014.12.018
91 M. P. Marder, Condensed Matter Physics, John Wiley & Sons, INC, New Jersey, 2010
https://doi.org/10.1002/9780470949955
92 R. Hockney, and J. Eastwood, Computer Simulation Using Particles, Taylor & Francis Group, New York, 1988
https://doi.org/10.1201/9781439822050
93 P. Rowe, G. Csányi, D. Alfè, and A. Michaelides, Development of a machine learning potential for graphene, Phys. Rev. B 97(5), 054303 (2018)
https://doi.org/10.1103/PhysRevB.97.054303
94 A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine learning a general-purpose interatomic potential for silicon, Phys. Rev. X 8(4), 041048 (2018)
https://doi.org/10.1103/PhysRevX.8.041048
95 X. Wan, W. Feng, Y. Wang, H. Wang, X. Zhang, C. Deng, and N. Yang, Materials discovery and properties prediction in thermal transport via materials informatics: A mini review, Nano Lett. 19(6), 3387 (2019)
https://doi.org/10.1021/acs.nanolett.8b05196
96 X. Wang, S. Zeng, Z. Wang, and J. Ni, Identification of crystalline materials with ultra-low thermal conductivity based on machine learning study, J. Phys. Chem. C 124(16), 8488 (2020)
https://doi.org/10.1021/acs.jpcc.9b11610
97 R. Juneja, G. Yumnam, S. Satsangi, and A. K. Singh, Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity, Chem. Mater. 31(14), 5145 (2019)
https://doi.org/10.1021/acs.chemmater.9b01046
98 E. J. Kautz, A. R. Hagen, J. M. Johns, and D. E. Burkes, A machine learning approach to thermal conductivity modeling: A case study on irradiated uraniummolybdenum nuclear fuels, Comput. Mater. Sci. 161, 107 (2019)
https://doi.org/10.1016/j.commatsci.2019.01.044
99 S. Fujii, T. Yokoi, C. A. J. Fisher, H. Moriwake, and M. Yoshiya, Quantitative prediction of grain boundary thermal conductivities from local atomic environments, Nat. Commun. 11(1), 1854 (2020)
https://doi.org/10.1038/s41467-020-15619-9
100 S. Ju, R. Yoshida, C. Liu, K. Hongo, T. Tadano, and J. Shiomi, Exploring diamond-like lattice thermal conductivity crystals via feature-based transfer learning, arXiv: 1909.11234 (2019)
101 A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization, Phys. Rev. Lett. 115(20), 205901 (2015)
https://doi.org/10.1103/PhysRevLett.115.205901
102 A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo, and N. Mingo, High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites, Phys. Rev. X 6(4), 041061 (2016)
https://doi.org/10.1103/PhysRevX.6.041061
103 C. Zhang and Q. Sun, Gaussian approximation potential for studying the thermal conductivity of silicene, J. Appl. Phys. 126(10), 105103 (2019)
https://doi.org/10.1063/1.5119281
104 H. Babaei, R. Guo, A. Hashemi, and S. Lee, Machinelearning- based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies, Phys. Rev. Mater. 3(7), 074603 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.074603
105 X. Qian, S. Peng, X. Li, Y. Wei, and R. Yang, Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon, Mater. Today Phys. 10, 100140 (2019)
https://doi.org/10.1016/j.mtphys.2019.100140
106 B. L. Zink, R. Pietri, and F. Hellman, Thermal conductivity and specific heat of thin-film amorphous silicon, Phys. Rev. Lett. 96(5), 055902 (2006)
https://doi.org/10.1103/PhysRevLett.96.055902
107 K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun. 4(1), 1640 (2013)
https://doi.org/10.1038/ncomms2630
108 P. Korotaev, I. Novoselov, A. Yanilkin, and A. Shapeev, Accessing thermal conductivity of complex compounds by machine learning interatomic potentials, Phys. Rev. B 100(14), 144308 (2019)
https://doi.org/10.1103/PhysRevB.100.144308
109 A. Agrawal and A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science ok, APL Mater. 4(5), 053208 (2016)
https://doi.org/10.1063/1.4946894
110 T. Zhan, L. Fang, and Y. Xu, Prediction of thermal boundary resistance by the machine learning method, Sci. Rep. 7(1), 7109 (2017)
https://doi.org/10.1038/s41598-017-07150-7
111 Y. J. Wu, M. Sasaki, M. Goto, L. Fang, and Y. Xu, Electrically conductive thermally insulating Bi-Si nanocomposites by interface design for thermal management, ACS Appl. Nano Mater. 1(7), 3355 (2018)
https://doi.org/10.1021/acsanm.8b00575
112 Y. J. Wu, T. Zhan, Z. Hou, L. Fang, and Y. Xu, Physical and chemical descriptors for predicting interfacial thermal resistance, Sci. Data 7(1), 36 (2020)
https://doi.org/10.1038/s41597-020-0405-y
113 H. Yang, Z. Zhang, J. Zhang, and X. C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride, Nanoscale 10(40), 19092 (2018)
https://doi.org/10.1039/C8NR05703F
114 S. Ju, S. Shimizu, and J. Shiomi, Designing thermal functional materials by coupling thermal transport calculations and machine learning, J. Appl. Phys. 128(16), 161102 (2020)
https://doi.org/10.1063/5.0017042
115 J. Wan, J. W. Jiang, and H. S. Park, Machine learningbased design of porous graphene with low thermal conductivity, Carbon 157, 262 (2020)
https://doi.org/10.1016/j.carbon.2019.10.037
116 S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, Randomness-induced phonon localization in graphene heat conduction, J. Phys. Chem. Lett. 9(14), 3959 (2018)
https://doi.org/10.1021/acs.jpclett.8b01653
117 T. Juntunen, O. Vänskä, and I. Tittonen, Anderson localization quenches thermal transport in aperiodic superlattices, Phys. Rev. Lett. 122(10), 105901 (2019)
https://doi.org/10.1103/PhysRevLett.122.105901
118 P. Chakraborty, Y. Liu, T. Ma, X. Guo, L. Cao, R. Hu, and Y. Wang, Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study, ACS Appl. Mater. Interfaces 12(7), 8795 (2020)
https://doi.org/10.1021/acsami.9b18084
119 P. Roy Chowdhury, C. Reynolds, A. Garrett, T. Feng, S. P. Adiga, and X. Ruan, Machine learning maximized Anderson localization of phonons in aperiodic superlattices, Nano Energy 69, 104428 (2020)
https://doi.org/10.1016/j.nanoen.2019.104428
120 M. Yamawaki, M. Ohnishi, S. Ju, and J. Shiomi, Multifunctional structural design of graphene thermoelectrics by Bayesian optimization, Sci. Adv. 4(6), eaar4192 (2018)
https://doi.org/10.1126/sciadv.aar4192
121 Z. Hou, Y. Takagiwa, Y. Shinohara, Y. Xu, and K. Tsuda, Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material, ACS Appl. Mater. Interfaces 11(12), 11545 (2019)
https://doi.org/10.1021/acsami.9b02381
122 A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by bayesian optimization, ACS Cent. Sci. 5(2), 319 (2019)
https://doi.org/10.1021/acscentsci.8b00802
123 J. Guo, S. Ju, and J. Shiomi, Design of a highly selective radiative cooling structure accelerated by materials informatics, Opt. Lett. 45(2), 343 (2020)
https://doi.org/10.1364/OL.45.000343
124 Z. Li, Q. Xu, Q. Sun, Z. Hou, and W. J. Yin, Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning, Adv. Funct. Mater. 29(9), 1807280 (2019)
https://doi.org/10.1002/adfm.201807280
125 K. Homma, Y. Liu, M. Sumita, R. Tamura, N. Fushimi, J. Iwata, K. Tsuda, and C. Kaneta, Optimization of heterogeneous ternary Li3PO4–Li3BO3–Li2SO4 mixture for Li-ion conductivity by machine learning, J. Phys. Chem. C 124(24), 12865 (2020)
https://doi.org/10.1021/acs.jpcc.9b11654
126 H. Hazama, S. Sobue, S. Tajima, and R. Asahi, Phosphorescent material search using a combination of highthroughput evaluation and machine learning, Inorg. Chem. 58(16), 10936 (2019)
https://doi.org/10.1021/acs.inorgchem.9b01370
127 Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, and Y. Yang, Machine learning guided appraisal and exploration of phase design for high entropy alloys, npj Comput. Mater. 5, 128 (2019)
https://doi.org/10.1038/s41524-019-0265-1
128 H. Salmenjoki, M. J. Alava, and L. Laurson, Machine learning plastic deformation of crystals, Nat. Commun. 9(1), 5307 (2018)
https://doi.org/10.1038/s41467-018-07737-2
129 K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H. T. Wang, and D. Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Sci. Bull. (Beijing) 63(13), 817 (2018)
https://doi.org/10.1016/j.scib.2018.05.027
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed