Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (3): 33500   https://doi.org/10.1007/s11467-020-1045-6
  本期目录
Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors
Lixing Luo1, Wanning Huang1, Canglei Yang1, Jing Zhang1(), Qichun Zhang2()
1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
2. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
 全文: PDF(4266 KB)  
Abstract

As high-performance organic semiconductors, π-conjugated polymers have attracted much attention due to their charming advantages including low-cost, solution processability, mechanical flexibility, and tunable optoelectronic properties. During the past several decades, the great advances have been made in polymers-based OFETs with p-type, n-type or even ambipolar characterics. Through chemical modification and alignment optimization, lots of conjugated polymers exhibited superior mobilities, and some mobilities are even larger than 10 cm2·V−1·s−1 in OFETs, which makes them very promising for the applications in organic electronic devices. This review describes the recent progress of the high performance polymers used in OFETs from the aspects of molecular design and assembly strategy. Furthermore, the current challenges and outlook in the design and development of conjugated polymers are also mentioned.

Key wordsconjugated polymers    p-type polymer    n-type polymer    ambipolar transport    high-ordered alignment
收稿日期: 2020-10-22      出版日期: 2021-04-26
Corresponding Author(s): Jing Zhang,Qichun Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(3): 33500.
Lixing Luo, Wanning Huang, Canglei Yang, Jing Zhang, Qichun Zhang. Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors. Front. Phys. , 2021, 16(3): 33500.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1045-6
https://academic.hep.com.cn/fop/CN/Y2021/V16/I3/33500
1 J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem 4(12), 2748 (2018)
https://doi.org/10.1016/j.chempr.2018.08.005
2 L. Shi, Y. Guo, W. Hu, and Y. Liu, Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors, Mater. Chem. Front. 1(12), 2423 (2017)
https://doi.org/10.1039/C7QM00169J
3 Q. Zhang, Shooting flexible electronics, Front. Phys. 16(1), 13602 (2021)
https://doi.org/10.1007/s11467-020-1009-x
4 J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)
https://doi.org/10.1038/nature20102
5 S. Wang, J. Xu, W. Wang, G. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
https://doi.org/10.1038/nature25494
6 L. Hou, X. Zhang, G. F. Cotella, G. Carnicella, M. Herder, B. M. Schmidt, M. Patzel, S. Hecht, F. Cacialli, and P. Samori, Optically switchable organic lightemitting transistors, Nat. Nanotechnol. 14(4), 347 (2019)
https://doi.org/10.1038/s41565-019-0370-9
7 A. A. Argun, A. Cirpan, and J. R. Reynolds, The first truly all-polymer electrochromic devices, Adv. Mater. 15(16), 1338 (2003)
https://doi.org/10.1002/adma.200305038
8 G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, A highly stable, new electrochromic polymers: Poly(1,bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy- 5-2′′-ethylhexyloxybenzene), Adv. Funct. Mater. 13(9), 726 (2003)
https://doi.org/10.1002/adfm.200304317
9 F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, and Q. Zhang, Electrochromic two-dimensional covalent organic framework with a revisable dark-to-transparent switch, Nat. Commun. 11(1), 5534 (2020)
https://doi.org/10.1038/s41467-020-19315-6
10 F. Yu, W. Liu, B. Li, D. Tian, J. L. Zuo, and Q. Zhang, Photo-stimulus-responsive large-area twodimensional covalent-organic framework films, Angew. Chem. Int. Ed. 58(45), 16101 (2019)
https://doi.org/10.1002/anie.201909613
11 H. Wang, C. J. Yao, H. J. Nie, L. Yang, S. Mei, and Q. Zhang, Recent progress in integrated functional electrochromic energy storage devices, J. Mater. Chem. C 8(44), 15507 (2020)
https://doi.org/10.1039/D0TC03934A
12 Y. Kim, C. Park, S. Im, and J. H. Kim, Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices, Sci. Rep. 10(1), 16488 (2020)
https://doi.org/10.1038/s41598-020-73259-x
13 S. Roy and C. Chakraborty, Nanostructured metallosupramolecular polymer-based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency, J. Mater. Chem. C 7(10), 2871 (2019)
https://doi.org/10.1039/C8TC06138F
14 L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, A flexible polymer memory device, Org. Electron. 8(4), 401 (2007)
https://doi.org/10.1016/j.orgel.2007.02.002
15 M. Walter, F. Friess, M. Krus, S. M. H. Zolanvari, G. Grun, H. Krober, and T. Pretsch, Shape memory polymer foam with programmable apertures, Polymers (Basel) 12(9), 1914 (2020)
https://doi.org/10.3390/polym12091914
16 S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C. Z. Li, J. Hou, Y. Li, and H. Chen, Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets, J. Am. Chem. Soc. 141(7), 3073 (2019)
https://doi.org/10.1021/jacs.8b12126
17 W. Chen, X. Yang, G. Long, X. Wan, Y. Chen, and Q. Zhang, Perylene diimide (PDI)-based small molecule with tetrahedral configuration as non-fullerene acceptor for organic solar cells, J. Mater. Chem. C 3(18), 4698 (2015)
https://doi.org/10.1039/C5TC00865D
18 W. Chen and Q. Zhang, Recent progress on non-fullerene small molecule acceptors in Organic Solar Cells (OSCs), J. Mater. Chem. C 5(6), 1275 (2017)
https://doi.org/10.1039/C6TC05066B
19 X. Xu, Z. Li, Z. Bi, T. Yu, W. Ma, K. Feng, Y. Li, and Q. Peng, Highly efficient nonfullerene polymer solar cells enabled by a copper(I) coordination strategy employing a 1,3,4-oxadiazole-containing wide-bandgap copolymer donor, Adv. Mater. 30(28), 1800737 (2018)
https://doi.org/10.1002/adma.201800737
20 J. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater. 17(2), 119 (2018)
https://doi.org/10.1038/nmat5063
21 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Singlejunction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core, Joule 3(4), 1140 (2019)
https://doi.org/10.1016/j.joule.2019.01.004
22 L. Lu, M. A. Kelly, W. You, and L. Yu, Status and prospects for ternary organic photovoltaics, Nat. Photonics 9(8), 491 (2015)
https://doi.org/10.1038/nphoton.2015.128
23 H. Wu, L. Ying, W. Yang, and Y. Cao, Progress and perspective of polymer white light-emitting devices and materials, Chem. Soc. Rev. 38(12), 3391 (2009)
https://doi.org/10.1039/b816352a
24 T. Yu, L. Liu, Z. Xie, and Y. Ma, Progress in smallmolecule luminescent materials for organic light-emitting diodes, Sci. China Chem. 58(6), 907 (2015)
https://doi.org/10.1007/s11426-015-5409-7
25 A. Salleo, R. J. Kline, D. M. DeLongchamp, and M. L. Chabinyc, Microstructural characterization and charge transport in thin films of conjugated polymers, Adv. Mater. 22(34), 3812 (2010)
https://doi.org/10.1002/adma.200903712
26 Y. Xu, H. Sun, W. Li, Y. F. Lin, F. Balestra, G. Ghibaudo, and Y. Y. Noh, Exploring the charge transport in conjugated polymers, Adv. Mater. 29(41), 1702729 (2017)
https://doi.org/10.1002/adma.201702729
27 K. S. Park, J. J. Kwok, R. Dilmurat, G. Qu, P. Kafle, X. Luo, S.H. Jung, Y. Olivier, J. K. Lee, J. Mei, D. Beljonne, and Y. Diao, Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow, Sci. Adv. 5(8), eaaw7757 (2019)
https://doi.org/10.1126/sciadv.aaw7757
28 R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater. 12(11), 1038 (2013)
https://doi.org/10.1038/nmat3722
29 Y. Zhao, X. Zhao, M. Roders, G. Qu, Y. Diao, A. L. Ayzner, and J. Mei, Complementary semiconducting polymer blends for efficient charge transport, Chem. Mater. 27(20), 7164 (2015)
https://doi.org/10.1021/acs.chemmater.5b03349
30 Y. Yang, Z. Liu, G. Zhang, X. Zhang, and D. Zhang, The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities, Adv. Mater. 31(46), 1903104 (2019)
https://doi.org/10.1002/adma.201903104
31 M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, and T. Park, Donor-acceptor-conjugated polymer for high‐performance organic field‐effect transistors: A progress report, Adv. Funct. Mater. 30(20), 1904545 (2020)
https://doi.org/10.1002/adfm.201904545
32 H. Zhang, K. Yang, K. Zhang, Z. Zhang, Q. Sun, and W. Yang, Thionating iso-diketopyrrolopyrrole-based polymers: From p-type to ambipolar field effect transistors with enhanced charge mobility, Polym. Chem. 9(14), 1807 (2018)
https://doi.org/10.1039/C8PY00292D
33 L. Chen, S. Chi, K. Zhao, J. Liu, X. Yu, and Y. Han, Aligned films of the DPP-Based conjugated polymer by solvent vapor enhanced drop casting, Polymer (Guildf.) 104, 123 (2016)
https://doi.org/10.1016/j.polymer.2016.10.005
34 J. Park, S. Lee, and H. H. Lee, High-mobility polymer thin-film transistors fabricated by solvent-assisted dropcasting, Org. Electron. 7(5), 256 (2006)
https://doi.org/10.1016/j.orgel.2006.03.008
35 E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J. M. Zuo, D. Shukla, and Y. Diao, Dynamic-template-directed multiscale assembly for largearea coating of highly-aligned conjugated polymer thin films, Nat. Commun. 8(1), 16070 (2017)
https://doi.org/10.1038/ncomms16070
36 Q. Y. Li, Z. F. Yao, Y. Lu, S. Zhang, Z. Ahmad, J. Y. Wang, X. Gu, and J. Pei, Achieving high alignment of conjugated polymers by controlled dip‐coating, Adv. Electron. Mater. 6(6), 2000080 (2020)
https://doi.org/10.1002/aelm.202000080
37 J. Xu, H. C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y. H. Kim, G. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y. Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, and Z. Bao, Multi-scale ordering in highly stretchable polymer semiconducting films, Nat. Mater. 18(6), 594 (2019)
https://doi.org/10.1038/s41563-019-0340-5
38 X. Cao, Z. Du, L. Chen, K. Zhao, H. Li, J. Liu, and Y. Han, Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution, Polymer (Guildf.) 118, 135 (2017)
https://doi.org/10.1016/j.polymer.2017.04.076
39 G. G. Jeon, M. Lee, J. Nam, W. Park, M. Yang, J. H. Choi, D. K. Yoon, E. Lee, B. Kim, and J. H. Kim, Simple solvent engineering for high-mobility and thermally robust conjugated polymer nanowire field-effect transistors, ACS Appl. Mater. Interfaces 10(35), 29824 (2018)
https://doi.org/10.1021/acsami.8b07643
40 K. J. Ihn, J. Moulton, and P. Smith, Whiskers of poly (3-alkylthiophene)s, J. Polym. Sci. B 31(6), 735 (1993)
https://doi.org/10.1002/polb.1993.090310614
41 X. Cao, L. Chen, K. Zhao, J. Liu, and Y. Han, Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation, J. Polym. Sci. B 56(11), 833 (2018)
https://doi.org/10.1002/polb.24598
42 J. Qian, G. Guerin, Y. Lu, G. Cambridge, I. Manners, and M. A. Winnik, Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprenepolyferrocenylsilane block copolymer micelles, Angew. Chem. Int. Ed. 50(7), 1622 (2011)
https://doi.org/10.1002/anie.201006223
43 J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. Min, J. M. Myoung, H. K. Baik, and U. Jeong, Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions, Macromolecules 45(18), 7504 (2012)
https://doi.org/10.1021/ma300958n
44 D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Approaching disorder-free transport in high-mobility conjugated polymers, Nature 515(7527), 384 (2014)
https://doi.org/10.1038/nature13854
45 P. H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Toward precision control of nanofiber orientation in conjugated polymer thin films: impact on charge transport, Chem. Mater. 28(24), 9099 (2016)
https://doi.org/10.1021/acs.chemmater.6b04202
46 I. Botiz and N. Stingelin, Influence of molecular conformations and microstructure on the optoelectronic properties of conjugated polymers, Materials (Basel) 7(3), 2273 (2014)
https://doi.org/10.3390/ma7032273
47 P. Prins, F. C. Grozema, J. M. Schins, S. Patil, U. Scherf, and L. D. Siebbeles, High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes), Phys. Rev. Lett. 96(14), 146601 (2006)
https://doi.org/10.1103/PhysRevLett.96.146601
48 L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors, J. Appl. Phys. 94(9), 6129 (2003)
https://doi.org/10.1063/1.1613369
49 V. Chaudhary, R. K. Pandey, R. Prakash, N. Kumar, and A. K. Singh, Highly aligned and crystalline poly(3- hexylthiophene) thin films by off-center spin coating for high performance organic field-effect transistors, Synth. Met. 258, 116221 (2019)
https://doi.org/10.1016/j.synthmet.2019.116221
50 D. Alberga, A. Perrier, I. Ciofini, G. F. Mangiatordi, G. Lattanzi, and C. Adamo, Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: Insights from theory, Phys. Chem. Chem. Phys. 17(28), 18742 (2015)
https://doi.org/10.1039/C5CP02769A
51 Y. Lei, P. Deng, Q. Zhang, Z. Xiong, Q. Li, J. Mai, X. Lu, X. Zhu, and B. S. Ong, Hydrocarbons-driven crystallization of polymer semiconductors for low-temperature fabrication of high-performance organic field-effect transistors, Adv. Funct. Mater. 28(15), 1706372 (2018)
https://doi.org/10.1002/adfm.201706372
52 S. Wang, S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren, Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers, Proc. Natl. Acad. Sci. USA 112(34), 10599 (2015)
https://doi.org/10.1073/pnas.1501381112
53 X. Guo, A. Facchetti, and T. J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114(18), 8943 (2014)
https://doi.org/10.1021/cr500225d
54 Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, A universal method to produce low–work function electrodes for organic electronics, Science 336(6079), 327 (2012)
https://doi.org/10.1126/science.1218829
55 M. Tantiwiwat, A. Tamayo, N. Luu, X. D. Dang, and T. Q. Nguyen, Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing, J. Phys. Chem. C 112(44), 17402 (2008)
https://doi.org/10.1021/jp8068305
56 M. Gruber, S. H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J. K. Lee, and H. Sirringhaus, Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering, Chem. Sci. (Camb.) 6(12), 6949 (2015)
https://doi.org/10.1039/C5SC01326G
57 W. Hong, S. Chen, B. Sun, M. A. Arnould, Y. Meng, and Y. Li, Is a polymer semiconductor having a “perfect” regular structure desirable for organic thin film transistors? Chem. Sci. (Camb.) 6(5), 3225 (2015)
https://doi.org/10.1039/C5SC00843C
58 Y. Yu, Y. Wu, A. Zhang, C. Li, Z. Tang, W. Ma, Y. Wu, and W. Li, Diketopyrrolopyrrole polymers with Thienyl and Thiazolyl linkers for application in field-effect transistors and polymer solar cells, ACS Appl. Mater. Interfaces 8(44), 30328 (2016)
https://doi.org/10.1021/acsami.6b06967
59 A. Zhang, C. Xiao, Y. Wu, C. Li, Y. Ji, L. Li, W. Hu, Z. Wang, W. Ma, and W. Li, Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors, Macromolecules 49(17), 6431 (2016)
https://doi.org/10.1021/acs.macromol.6b01446
60 Y. Yang, Z. Liu, L. Chen, J. Yao, G. Lin, X. Zhang, G. Zhang, and D. Zhang, Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective fieldeffect transistor sensors toward CO and H2S, Chem. Mater. 31(5), 1800 (2019)
https://doi.org/10.1021/acs.chemmater.9b00106
61 A. R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, ε-branched flexible side chain substituted diketopyrrolopyrrolecontaining polymers designed for high hole and electron mobilities, Adv. Funct. Mater. 25(2), 247 (2015)
https://doi.org/10.1002/adfm.201403020
62 Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus, and D. Zhang, Charge mobility enhancement for conjugated dpp-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit, Chem. Mater. 30(9), 3090 (2018)
https://doi.org/10.1021/acs.chemmater.8b01007
63 J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)
https://doi.org/10.1038/srep00754
64 Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T. W. Ng, C. S. Lee, and B. S. Ong, Solution-processed donoracceptor polymer nanowire network semiconductors for high-performance field-effect transistors, Sci. Rep. 6(1), 24476 (2016)
https://doi.org/10.1038/srep24476
65 B. C. Schroeder, T. Kurosawa, T. Fu, Y. Chiu, J. Mun, G. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, and Z. Bao, Taming charge transport in semiconducting polymers with branched alkyl side chains, Adv. Funct. Mater. 27(34), 1701973 (2017)
https://doi.org/10.1002/adfm.201701973
66 C. Xiao, G. Zhao, A. Zhang, W. Jiang, R. A. Janssen, W. Li, W. Hu, and Z. Wang, High performance polymer nanowire field-effect transistors with distinct molecular orientations, Adv. Mater. 27(34), 4963 (2015)
https://doi.org/10.1002/adma.201502617
67 J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. Feig, J. W. F. To, S. R. Gagné, J. Park, B. C. Schroeder, C. Lu, J. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. H. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)
https://doi.org/10.1126/science.aah4496
68 H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly Pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance fieldeffect transistors, Adv. Mater. 24(34), 4618 (2012)
https://doi.org/10.1002/adma.201201318
69 H. Yu, K. H. Park, I. Song, M. J. Kim, Y. H. Kim, and J. H. Oh, Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors, J. Mater. Chem. C 3(44), 11697 (2015)
https://doi.org/10.1039/C5TC02565F
70 J. Y. Back, H. Yu, I. Song, I. Kang, H. Ahn, T. J. Shin, S. K. Kwon, J. H. Oh, and Y. H. Kim, Investigation of structure–property relationships in diketopyrrolopyrrolebased polymer semiconductors via side-chain engineering, Chem. Mater. 27(5), 1732 (2015)
https://doi.org/10.1021/cm504545e
71 I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, and Y. H. Kim, Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc. 135(40), 14896 (2013)
https://doi.org/10.1021/ja405112s
72 H. H. Choi, J. Y. Baek, E. Song, B. Kang, K. Cho, S. K. Kwon, and Y. H. Kim, A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents, Adv. Mater. 27(24), 3626 (2015)
https://doi.org/10.1002/adma.201500335
73 X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D. M. DeLongchamp, Molecular origin of high field-effect mobility in an indacenodithiophenebenzothiadiazole copolymer, Nat. Commun. 4(1), 2238 (2013)
https://doi.org/10.1038/ncomms3238
74 A. Wadsworth, H. Chen, K. J. Thorley, C. Cendra, M. Nikolka, H. Bristow, M. Moser, A. Salleo, T. D. Anthopoulos, H. Sirringhaus, and I. McCulloch, Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors, J. Am. Chem. Soc. 142(2), 652 (2020)
https://doi.org/10.1021/jacs.9b09374
75 H. Bronstein, D. S. Leem, R. Hamilton, P. Woebkenberg, S. King, W. Zhang, R. S. Ashraf, M. Heeney, T. D. Anthopoulos, J. Mello, and I. McCulloch, Indacenodithiophene-Co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization, Macromolecules 44(17), 6649 (2011)
https://doi.org/10.1021/ma201158d
76 J. H. Kim, M. W. Choi, W. S. Yoon, S. Oh, S. H. Hong, and S. Y. Park, Structural and electronic origin of bislactam- based high-performance organic thin-film transistors, ACS Appl. Mater. Interfaces 11(8), 8301 (2019)
https://doi.org/10.1021/acsami.8b20168
77 Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, and M. Heeney, Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications, J. Am. Chem. Soc. 139(25), 8552 (2017)
https://doi.org/10.1021/jacs.7b03099
78 H. Chen, A. Wadsworth, C. Ma, A. Nanni, W. Zhang, M. Nikolka, A. M. T. Luci, L. M. A. Perdigao, K. J. Thorley, C. Cendra, B. Larson, G. Rumbles, T. D. Anthopoulos, A. Salleo, G. Costantini, H. Sirringhaus, and I. McCulloch, The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors, J. Am. Chem. Soc. 141(47), 18806 (2019)
https://doi.org/10.1021/jacs.9b09367
79 W. Zhang, Y. Han, X. Zhu, Z. Fei, Y. Feng, N. D. Treat, H. Faber, N. Stingelin, I. McCulloch, T. D. Anthopoulos, and M. Heeney, A novel alkylated indacenodithieno[3,2- b]thiophene-based polymer for high-performance fieldeffect transistors, Adv. Mater. 28(20), 3922 (2016)
https://doi.org/10.1002/adma.201504092
80 H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. J. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. R. McNeill, H. Sirringhaus, and I. Mc-Culloch, Dithiopheneindenofluorene (tif) semiconducting polymers with very high mobility in field-effect transistors, Adv. Mater. 29(36), 1702523 (2017)
https://doi.org/10.1002/adma.201702523
81 M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, and K. Müllen, Field-effect transistors based on a benzothiadiazole cyclopentadithiophene copolymer, J. Am. Chem. Soc. 129(12), 3472 (2007)
https://doi.org/10.1021/ja0683537
82 H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)
https://doi.org/10.1021/ja108861q
83 S. Wang, M. Kappl, I. Liebewirth, M. Muller, K. Kirchhoff, W. Pisula, and K. Mullen, Organic field-effect transistors based on highly ordered single polymer fibers, Adv. Mater. 24(3), 417 (2012)
https://doi.org/10.1002/adma.201103057
84 Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. Matsui, K. Müllen, and J. Takeya, Mobility exceeding 10 cm2/(V·s) in donoracceptor polymer transistors with band-like charge transport, Chem. Mater. 28(2), 420 (2016)
https://doi.org/10.1021/acs.chemmater.5b04567
85 C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)
https://doi.org/10.1021/nl500758w
86 Y. Park, J. W. Jung, H. Kang, J. Seth, Y. Kang, and M. M. Sung, Single-crystal poly[4-(4,4- dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2- yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] nanowires with ultrahigh mobility, Nano Lett. 19(2), 1028 (2019)
https://doi.org/10.1021/acs.nanolett.8b04302
87 M. Wang, M. J. Ford, C. Zhou, M. Seifrid, T. Q. Nguyen, and G. C. Bazan, Linear conjugated polymer backbones improve alignment in nanogroove-assisted organic fieldeffect transistors, J. Am. Chem. Soc. 139(48), 17624 (2017)
https://doi.org/10.1021/jacs.7b10332
88 J. Lee, S. H. Kang, S. M. Lee, K. C. Lee, H. Yang, Y. Cho, D. Han, Y. Li, B. H. Lee, and C. Yang, An ultrahigh mobility in isomorphic fluorobenzo[c][1,2,5]thiadiazole-based polymers, Angew. Chem. Int. Ed. 57(41), 13629 (2018)
https://doi.org/10.1002/anie.201808098
89 B. Nketia-Yawson, H. S. Lee, D. Seo, Y. Yoon, W. T. Park, K. Kwak, H. J. Son, B. Kim, and Y. Y. Noh, A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors, Adv. Mater. 27(19), 3045 (2015)
https://doi.org/10.1002/adma.201500233
90 B. Nketia-Yawson, A. R. Jung, H. D. Nguyen, K. K. Lee, B. Kim, and Y. Y. Noh, Difluorobenzothiadiazole and selenophene-based conjugated polymer demonstrating an effective hole mobility exceeding 5 cm2·V−1·s−1 with solid-state electrolyte dielectric, ACS Appl. Mater. Interfaces 10(38), 32492 (2018)
https://doi.org/10.1021/acsami.8b14176
91 T. Lei, J. Y. Wang, and J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47(4), 1117 (2014)
https://doi.org/10.1021/ar400254j
92 T. Lei, Y. Cao, Y. Fan, C. J. Liu, S. C. Yuan, and J. Pei, High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers, J. Am. Chem. Soc. 133(16), 6099 (2011)
https://doi.org/10.1021/ja111066r
93 T. Lei, J. H. Dou, and J. Pei, Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors, Adv. Mater. 24(48), 6457 (2012)
https://doi.org/10.1002/adma.201202689
94 J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, and Z. Bao, Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors, J. Am. Chem. Soc. 133(50), 20130 (2011)
https://doi.org/10.1021/ja209328m
95 H. C. Wu, C. C. Hung, C. W. Hong, H. S. Sun, J. T. Wang, G. Yamashita, T. Higashihara, and W. C. Chen, Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable fieldeffect transistors, Macromolecules 49(22), 8540 (2016)
https://doi.org/10.1021/acs.macromol.6b02145
96 G. Xue, X. Zhao, G. Qu, T. Xu, A. Gumyusenge, Z. Zhang, Y. Zhao, Y. Diao, H. Li, and J. Mei, Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films, ACS Appl. Mater. Interfaces 9(30), 25426 (2017)
https://doi.org/10.1021/acsami.7b07624
97 J. Mei, H. Wu, Y. Diao, A. Appleton, H. Wang, Y. Zhou, W. Y. Lee, T. Kurosawa, W. C. Chen, and Z. Bao, Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films, Adv. Funct. Mater. 25(23), 3455 (2015)
https://doi.org/10.1002/adfm.201500684
98 H. T. Nicolai, M. Kuik, G. A. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P. W. Blom, Unification of trap-limited electron transport in semiconducting polymers, Nat. Mater. 11(10), 882 (2012)
https://doi.org/10.1038/nmat3384
99 R. Zhao, Y. Min, C. Dou, B. Lin, W. Ma, J. Liu, and L. Wang, A conjugated polymer containing a B ← N unit for unipolar n-type organic field-effect transistors, ACS Appl. Polym. Mater. 2(1), 19 (2020)
https://doi.org/10.1021/acsapm.9b00860
100 H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature 457(7230), 679 (2009)
https://doi.org/10.1038/nature07727
101 Y. J. Kim, N. K. Kim, W. T. Park, C. Liu, Y. Y. Noh, and D. Y. Kim, Kinetically controlled crystallization in conjugated polymer films for high‐performance organic field‐effect transistors, Adv. Funct. Mater. 29(23), 1807786 (2019)
https://doi.org/10.1002/adfm.201807786
102 D. H. Lee, M. Kang, D. H. Lim, Y. Kim, J. Lee, D. Y. Kim, and K. J. Baeg, Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors, J. Mater. Chem. C 6(20), 5497 (2018)
https://doi.org/10.1039/C8TC01076E
103 T. Kurosawa, Y. C. Chiu, Y. Zhou, X. Gu, W. C. Chen, and Z. Bao, Impact of polystyrene oligomer side chains on naphthalene diimide-bithiophene polymers as n-type semiconductors for organic field-effect transistors, Adv. Funct. Mater. 26(8), 1261 (2016)
https://doi.org/10.1002/adfm.201504255
104 J. Panidi, J. Kainth, A. F. Paterson, S. Wang, L. Tsetseris, A. H. Emwas, M. A. McLachlan, M. Heeney, and T. D. Anthopoulos, Introducing a nonvolatile N‐type dopant drastically improves electron transport in polymer and small‐molecule organic transistors, Adv. Funct. Mater. 29(34), 1902784 (2019)
https://doi.org/10.1002/adfm.201902784
105 W. Wang, R. Chen, Y. Hu, H. Lu, L. Qiu, Y. Ding, D. Sun, and G. Zhang, High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors, J. Mater. Chem. C 7(27), 8450 (2019)
https://doi.org/10.1039/C9TC01785B
106 B. Kang, R. Kim, S. B. Lee, S. K. Kwon, Y. H. Kim, and K. Cho, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am. Chem. Soc. 138(11), 3679 (2016)
https://doi.org/10.1021/jacs.5b10445
107 R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, and Y. H. Kim, High-mobility airstable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors, Adv. Funct. Mater. 23(46), 5719 (2013)
https://doi.org/10.1002/adfm.201301197
108 R. Kim, B. Kang, D. H. Sin, H. H. Choi, S. K. Kwon, Y. H. Kim, and K. Cho, Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure, Chem. Commun. (Camb.) 51(8), 1524 (2015)
https://doi.org/10.1039/C4CC08381D
109 J. Ma, Z. Zhao, Y. Guo, H. Geng, Y. Sun, J. Tian, Q. He, Z. Cai, X. Zhang, G. Zhang, Z. Liu, D. Zhang, and Y. Liu, Improving the electronic transporting property for flexible field-effect transistors with naphthalene diimidebased conjugated polymer through branching/linear sidechain engineering strategy, ACS Appl. Mater. Interfaces 11(17), 15837 (2019)
https://doi.org/10.1021/acsami.9b00531
110 Y. Wang, T. Hasegawa, H. Matsumoto, T. Mori, and T. Michinobu, High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers, Adv. Mater. 30(13), 1707164 (2018)
https://doi.org/10.1002/adma.201707164
111 Y. Wang, T. Hasegawa, H. Matsumoto, and T. Michinobu, Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding, J. Am. Chem. Soc. 141(8), 3566 (2019)
https://doi.org/10.1021/jacs.8b12499
112 Y. Wang, S. W. Kim, J. Lee, H. Matsumoto, B. J. Kim, and T. Michinobu, Dual imide-functionalized unit-based regioregular D-A1-D-A2 polymers for efficient unipolar n-channel organic transistors and all-polymer solar cells, ACS Appl. Mater. Interfaces 11(25), 22583 (2019)
https://doi.org/10.1021/acsami.9b05537
113 Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang, and Y. Liu, High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimidebenzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V−1·s−1, Adv. Mater. 29(4), 1602410 (2017)
https://doi.org/10.1002/adma.201602410
114 L. Zhang, Z. Wang, C. Duan, Z. Wang, Y. Deng, J. Xu, F. Huang, and Y. Cao, Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors, Chem. Mater. 30(22), 8343 (2018)
https://doi.org/10.1021/acs.chemmater.8b03902
115 J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
https://doi.org/10.1039/C7TC01680H
116 C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors, J. Am. Chem. Soc. 134(40), 16532 (2012)
https://doi.org/10.1021/ja308211n
117 J. H. Park, E. H. Jung, J. W. Jung, and W. H. Jo, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater. 25(18), 2583 (2013)
https://doi.org/10.1002/adma.201205320
118 H. J. Yun, S. J. Kang, Y. Xu, S. O. Kim, Y. H. Kim, Y. Y. Noh, and S. K. Kwon, Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution, Adv. Mater. 26(43), 7300 (2014)
https://doi.org/10.1002/adma.201403262
119 H. Yu, H. N. Kim, I. Song, Y. H. Ha, H. Ahn, J. H. Oh, and Y. H. Kim, Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor-donor-acceptor unit, J. Mater. Chem. C 5(14), 3616 (2017)
https://doi.org/10.1039/C7TC00044H
120 Z. Ni, H. Dong, H. Wang, S. Ding, Y. Zou, Q. Zhao, Y. Zhen, F. Liu, L. Jiang, and W. Hu, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V−1·s−1 in flexible thin film devices, Adv. Mater. 30(10), 1704843 (2018)
https://doi.org/10.1002/adma.201704843
121 X. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, and T. Lei, Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics, J. Am. Chem. Soc. 141(51), 20215 (2019)
https://doi.org/10.1021/jacs.9b10107
122 C. J. Yao, H. L. Zhang, and Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers, Polymers (Basel) 11(1), 107 (2019)
https://doi.org/10.3390/polym11010107
123 J. Xie, C. E. Zhao, Z. Lin, P. Gu, and Q. Zhang, Nanostructured conjugated polymers for energy-related applications beyond solar cells, Chem. Asian J. 11(10), 1489 (2016)
https://doi.org/10.1002/asia.201600293
124 P. Deng and Q. Zhang, Recent developments on isoindigobased conjugated polymers, Polym. Chem. 5(10), 3298 (2014)
https://doi.org/10.1039/C3PY01598J
125 Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Mullen, U. Koldemir, J. R. Reynolds, R. Lazzaroni, J. Cornil, and D. Beljonne, High-mobility hole and electron transport conjugated polymers: How structure defines function, Adv. Mater. 26(14), 2119 (2014)
https://doi.org/10.1002/adma.201305809
126 G. Kim, A. R. Han, H. R. Lee, J. Lee, J. H. Oh, and C. Yang, Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors, Chem. Commun. (Camb.) 50(17), 2180 (2014)
https://doi.org/10.1039/c3cc48013e
127 W. Yue, M. Nikolka, M. Xiao, A. Sadhanala, C. B. Nielsen, A. J. P. White, H. Y. Chen, A. Onwubiko, H. Sirringhaus, and I. McCulloch, Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications, J. Mater. Chem. C 4(41), 9704 (2016)
https://doi.org/10.1039/C6TC03000A
128 Y. Gao, Y. Deng, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo, Adv. Mater. 29(13), 1606217 (2017)
https://doi.org/10.1002/adma.201606217
129 F. Chen, Y. Jiang, Y. Sui, J. Zhang, H. Tian, Y. Han, Y. Deng, W. Hu, and Y. Geng, Donor-acceptor conjugated polymers based on bisisoindigo: Energy level modulation toward unipolar n-type semiconductors, Macromolecules 51(21), 8652 (2018)
https://doi.org/10.1021/acs.macromol.8b01885
130 T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, and J. Pei, Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2·V−1·s−1 under ambient conditions, J. Am. Chem. Soc. 135(33), 12168 (2013)
https://doi.org/10.1021/ja403624a
131 T. Lei, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, “Conformation locked” strong electron-deficient poly(pphenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position, J. Am. Chem. Soc. 136(5), 2135 (2014)
https://doi.org/10.1021/ja412533d
132 Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphologydependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)
https://doi.org/10.1002/adma.201600541
133 Y. Z. Dai, N. Ai, Y. Lu, Y. Q. Zheng, J. H. Dou, K. Shi, T. Lei, J. Y. Wang, and J. Pei, Embedding electrondeficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors, Chem. Sci. (Camb.) 7(9), 5753 (2016)
https://doi.org/10.1039/C6SC01380E
134 Y. Q. Zheng, Z. F. Yao, T. Lei, J. H. Dou, C. Y. Yang, L. Zou, X. Meng, W. Ma, J. Y. Wang, and J. Pei, Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solidstate morphology and charge-transport properties, Adv. Mater. 29(42), 1701072 (2017)
https://doi.org/10.1002/adma.201701072
135 Z. Yi, S. Wang, and Y. Liu, Design of high-mobility diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27(24), 3589 (2015)
https://doi.org/10.1002/adma.201500401
136 B. Sun, W. Hong, Z. Yan, H. Aziz, and Y. Li, Record high electron mobility of 6.3 cm2·V−1·s−1 achieved for polymer semiconductors using a new building block, Adv. Mater. 26(17), 2636 (2014)
https://doi.org/10.1002/adma.201305981
137 Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater. 27(42), 6753 (2015)
https://doi.org/10.1002/adma.201502896
138 K. Guo, J. Bai, Y. Jiang, Z. Wang, Y. Sui, Y. Deng, Y. Han, H. Tian, and Y. Geng, Diketopyrrolopyrrolebased conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater. 28(31), 1801097 (2018)
https://doi.org/10.1002/adfm.201801097
139 D. Khim, Y. R. Cheon, Y. Xu, W. T. Park, S. K. Kwon, Y. Y. Noh, and Y. H. Kim, Facile route to control the ambipolar transport in semiconducting polymers, Chem. Mater. 28(7), 2287 (2016)
https://doi.org/10.1021/acs.chemmater.6b00298
140 J. Yang, H. Wang, J. Chen, J. Huang, Y. Jiang, J. Zhang, L. Shi, Y. Sun, Z. Wei, G. Yu, Y. Guo, S. Wang, and Y. Liu, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater. 29(22), 1606162 (2017)
https://doi.org/10.1002/adma.201606162
141 Z. Ni, H. Wang, Q. Zhao, J. Zhang, Z. Wei, H. Dong, and W. Hu, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step ch activation strategy, Adv. Mater. 31(10), 1806010 (2019)
https://doi.org/10.1002/adma.201806010
142 Z. Ni, H. Wang, H. Dong, Y. Dang, Q. Zhao, X. Zhang, and W. Hu, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem. 11(3), 271 (2019)
https://doi.org/10.1038/s41557-018-0200-y
143 D. Shi, Z. Liu, J. Ma, Z. Zhao, L. Tan, G. Lin, J. Tian, X. Zhang, G. Zhang, and D. Zhang, Half-fused diketopyrrolopyrrole-based conjugated donoracceptor polymer for ambipolar field-effect transistors, Adv. Funct. Mater. 30(21), 1910235 (2020)
https://doi.org/10.1002/adfm.201910235
144 J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen, Y. Sun, L. Shi, Y. Yi, Z. Shuai, Y. Guo, S. Wang, and Y. Liu, Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors, Adv. Mater. 29(36), 1702115 (2017)
https://doi.org/10.1002/adma.201702115
145 T. Takaya, M. D. Mamo, M. Karakawa, and Y. Y. Noh, Isoindigo benzodifurandione based conjugated polymers for high performance organic field-effect transistors, J. Mater. Chem. C 6(29), 7822 (2018)
https://doi.org/10.1039/C8TC02348D
146 K. Huang, X. Zhao, Y. Du, S. Kim, X. Wang, H. Lu, K. Cho, G. Zhang, and L. Qiu, Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization, J. Mater. Chem. C 7(25), 7618 (2019)
https://doi.org/10.1039/C9TC02021G
147 Y. Jiang, J. Chen, Y. Sun, Q. Li, Z. Cai, J. Li, Y. Guo, W. Hu, and Y. Liu, Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors, Adv. Mater. 31(2), 1805761 (2019)
https://doi.org/10.1002/adma.201805761
148 X. Zhou, N. Ai, Z. H. Guo, F. D. Zhuang, Y. S. Jiang, J. Y. Wang, and J. Pei, Balanced ambipolar organic thinfilm transistors operated under ambient conditions: Role of the donor moiety in BDOPV-based conjugated copolymers, Chem. Mater. 27(5), 1815 (2015)
https://doi.org/10.1021/acs.chemmater.5b00018
149 Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, and Y. Li, (3E,8E)-3,8-Bis(2-oxoindolin-3-ylidene)naphtho-[1,2- b:5,6-b′]difuran-2,7(3H,8H)-dione (INDF) based polymers for organic thin-film transistors with highly balanced ambipolar charge transport characteristics, Chem. Commun. (Camb.) 51(70), 13515 (2015)
https://doi.org/10.1039/C5CC03917G
150 H. Luo, C. Yu, Z. Liu, G. Zhang, H. Geng, Y. Yi, K. Broch, Y. Hu, A. Sadhanala, L. Jiang, P. Qi, Z. Cai, H. Sirringhaus, and D. Zhang, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2(5), e1600076 (2016)
https://doi.org/10.1126/sciadv.1600076
151 M. Kang, J. Yeo, W. Park, N. Kim, D. Lim, H. Hwang, K. Baeg, Y. Noh, and D. Kim, Favorable molecular orientation enhancement in semiconducting polymer assisted by conjugated organic small molecules, Adv. Funct. Mater. 26(46), 8527 (2016)
https://doi.org/10.1002/adfm.201603617
152 K. Wasapinyokul, T. Panjasamanwong, W. Ponkasemsuk, C. Sriprachuabwong, and T. Lomas, Mathematical model for thickness of off‐center spin‐coated polymer films, J. Appl. Polym. Sci. 137(6), 48356 (2020)
https://doi.org/10.1002/app.48356
153 H. Wang, L. Chen, R. Xing, J. Liu, and Y. Han, Simultaneous control over both molecular order and long-range alignment in films of the donor-acceptor copolymer, Langmuir 31(1), 469 (2015)
https://doi.org/10.1021/la5037772
154 A. Li, D. Bilby, B. X. Dong, J. Amonoo, J. Kim, and P. F. Green, Macroscopic alignment of poly(3-hexylthiophene) for enhanced long-range collection of photogenerated carriers, J. Polym. Sci. B 54(2), 180 (2016)
https://doi.org/10.1002/polb.23888
155 S. Wang, A. Kiersnowski, W. Pisula, and K. Mullen, Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: The key role of the first monolayer, J. Am. Chem. Soc. 134(9), 4015 (2012)
https://doi.org/10.1021/ja211630w
156 S. Wang, W. Pisula, and K. Müllen, Nanofiber growth and alignment in solution processed n-type naphthalenediimide- based polymeric field-effect transistors, J. Mater. Chem. 22(47), 24827 (2012)
https://doi.org/10.1039/c2jm35351b
157 X. Gu, L. Shaw, K. Gu, M. F. Toney, and Z. Bao, The meniscus-guided deposition of semiconducting polymers, Nat. Commun. 9(1), 534 (2018)
https://doi.org/10.1038/s41467-018-02833-9
158 G. Qu, J. J. Kwok, and Y. Diao, Flow-directed crystallization for printed electronics, Acc. Chem. Res. 49(12), 2756 (2016)
https://doi.org/10.1021/acs.accounts.6b00445
159 Z. Zhao, H. Liu, Y. Zhao, C. Cheng, J. Zhao, Q. Tang, G. Zhang, and Y. Liu, Anisotropic charge-carrier transport in high-mobility donor-acceptor conjugated polymer semiconductor films,Chem. Asian J. 11(19), 2725 (2016)
https://doi.org/10.1002/asia.201600082
160 G. Wang, W. Huang, N. D. Eastham, S. Fabiano, E. F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R. P. H. Chang, L. X. Chen, M. J. Bedzyk, F. S. Melkonyan, A. Facchetti, and T. J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. USA 114(47), E10066 (2017)
https://doi.org/10.1073/pnas.1713634114
161 F. Ge, Z. Liu, S. B. Lee, X. Wang, G. Zhang, H. Lu, K. Cho, and L. Qiu, Bar-coated ultrathin semiconductors from polymer blend for one-step organic field-effect transistors, ACS Appl. Mater. Interfaces 10(25), 21510 (2018)
https://doi.org/10.1021/acsami.8b07118
162 B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. Mannsfeld, and Z. Bao, Ultrahigh electrical conductivity in solution-sheared polymeric transparent films, Proc. Natl. Acad. Sci. USA 112(46), 14138 (2015)
https://doi.org/10.1073/pnas.1509958112
163 J. Liu, M. Arif, J. Zou, S. I. Khondaker, and L. Zhai, Controlling poly(3-hexylthiophene) crystal dimension: nanowhiskers and nanoribbons, Macromolecules 42(24), 9390 (2009)
https://doi.org/10.1021/ma901955c
164 D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, and K. Cho, Single-crystal polythiophene microwires grown by self-assembly, Adv. Mater. 18(6), 719 (2006)
https://doi.org/10.1002/adma.200502442
165 H. A. Um, D. H. Lee, D. U. Heo, D. S. Yang, J. Shin, H. Baik, M. J. Cho, and D. H. Choi, High aspect ratio conjugated polymer nanowires for high performance fieldeffect transistors and phototransistors, ACS Nano 9(5), 5264 (2015)
https://doi.org/10.1021/acsnano.5b01982
166 X. Xiao, Z. Hu, Z. Wang, and T. He, Study on the single crystals of poly(3-octylthiophene) induced by solventvapor annealing, J. Phys. Chem. B 113(44), 14604 (2009)
https://doi.org/10.1021/jp9064505
167 X. Xiao, Z. Wang, Z. Hu, and T. He, Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation, J. Phys. Chem. B 114(22), 7452 (2010)
https://doi.org/10.1021/jp911525d
168 H. Wang, J. Liu, Y. Xu, and Y. Han, Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length, J. Phys. Chem. B 117(19), 5996 (2013)
https://doi.org/10.1021/jp402039g
169 X. Li, P. J. Wolanin, L. R. MacFarlane, R. L. Harniman, J. Qian, O. E. C. Gould, T. G. Dane, J. Rudin, M. J. Cryan, T. Schmaltz, H. Frauenrath, M. A. Winnik, C. F. J. Faul, and I. Manners, Uniform electroactive fibre-like micelle nanowires for organic electronics, Nat. Commun. 8(1), 1 (2017)
https://doi.org/10.1038/ncomms16142
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed