Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 43300   https://doi.org/10.1007/s11467-021-1047-z
  本期目录
The origin of ultrasensitive SERS sensing beyond plasmonics
Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu()
School of Physics, Southeast University, Nanjing 211189, China
 全文: PDF(3532 KB)  
Abstract

Plasmon-free surface-enhanced Raman scattering (SERS) substrates have attracted tremendous attention for their abundant sources, excellent chemical stability, superior biocompatibility, good signal uniformity, and unique selectivity to target molecules. Recently, researchers have made great progress in fabricating novel plasmon-free SERS substrates and exploring new enhancement strategies to improve their sensitivity. This review summarizes the recent developments of plasmon-free SERS substrates and specially focuses on the enhancement mechanisms and strategies. Furthermore, the promising applications of plasmon-free SERS substrates in biomedical diagnosis, metal ions and organic pollutants sensing, chemical and biochemical reactions monitoring, and photoelectric characterization are introduced. Finally, current challenges and future research opportunities in plasmon-free SERS substrates are briefly discussed.

Key wordssurface-enhanced Raman scattering    plasmon-free    enhancement mechanism    enhancement strategy    charge transfer
收稿日期: 2020-10-21      出版日期: 2021-04-02
Corresponding Author(s): Teng Qiu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 43300.
Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. , 2021, 16(4): 43300.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1047-z
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/43300
1 M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at silver electrode, Chem. Phys. Lett. 26(2), 163 (1974)
https://doi.org/10.1016/0009-2614(74)85388-1
2 D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry (Part I): Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84(1), 1 (1977)
https://doi.org/10.1016/S0022-0728(77)80224-6
3 M. G. Albrecht, and J. A. Creighton, Anomalously intense Raman spectra of phridine at a silver electrode, J. Am. Chem. Soc. 99(15), 5215 (1977)
https://doi.org/10.1021/ja00457a071
4 C. Zong, M. X. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, and B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges, Chem. Rev. 118(10), 4946 (2018)
https://doi.org/10.1021/acs.chemrev.7b00668
5 X. Wang, S. C. Huang, S. Hu, S. Yan, and B. Ren, Fundamental understanding and applications of plasmonenhanced Raman spectroscopy, Nat. Rev. Phys. 2(5), 253 (2020)
https://doi.org/10.1038/s42254-020-0171-y
6 J. Langer, D. Jimenez De Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, et al., Present and future of surface-enhanced Raman scattering, ACS Nano 14(1), 28 (2020)
7 Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
https://doi.org/10.1007/s11467-013-0347-3
8 X. C. Fan, Q. Hao, M. Z. Li, X. Y. Zhang, X. Z. Yang, Y. F. Mei, and T. Qiu, Hotspots on the move: Active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing, ACS Appl. Mater. Interfaces 12(25), 28783 (2020)
https://doi.org/10.1021/acsami.0c05371
9 L. L. Lan, X. C. Fan, Y. M. Gao, G. Q. Li, Q. Hao, and T. Qiu, Plasmonic metal carbide SERS chips, J. Mater. Chem. C 8(41), 14523 (2020)
https://doi.org/10.1039/D0TC03512B
10 Q. Hao, M. Z. Li, J. W. Wang, X. C. Fan, J. Jiang, X. X. Wang, M. S. Zhu, T. Qiu, L. B. Ma, P. K. Chu, and O. G. Schmidt, Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity, ACS Appl. Mater. Interfaces 12(48), 54174 (2020)
https://doi.org/10.1021/acsami.0c16315
11 X. Wang, S. C. Huang, T. X. Huang, H. S. Su, J. H. Zhong, Z. C. Zeng, M. H. Li, and B. Ren, Tip-enhanced Raman spectroscopy for surfaces and interfaces, Chem. Soc. Rev. 46(13), 4020 (2017)
https://doi.org/10.1039/C7CS00206H
12 Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 17 (2014)
https://doi.org/10.1007/s11467-013-0364-2
13 J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shellisolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)
https://doi.org/10.1038/nature08907
14 Y. Q. Gu, C. He, Y. Q. Zhang, L. Lin, B. D. Thackray, and J. Ye, Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels, Nat. Commun. 11(1), 516 (2020)
https://doi.org/10.1038/s41467-019-14070-9
15 F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
https://doi.org/10.1007/s11467-012-0255-y
16 L. L. Lan, X. Y. Hou, Y. M. Gao, X. C. Fan, and T. Qiu, Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy, Nanotechnology 31(5), 055502 (2020)
https://doi.org/10.1088/1361-6528/ab4f11
17 S. Cong, Y. Y. Yuan, Z. G. Chen, J. Y. Hou, M. Yang, Y. L. Su, Y. Y. Zhang, L. Li, Q. W. Li, F. X. Geng, and Z. G. Zhao, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nat. Commun. 6(1), 7800 (2015)
https://doi.org/10.1038/ncomms8800
18 J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle, Adv. Mater. 29(5), 1604797 (2017)
https://doi.org/10.1002/adma.201604797
19 L. L. Yang, Y. S. Peng, Y. Yang, J. J. Liu, H. L. Huang, B. H. Yu, J. M. Zhao, Y. L. Lu, Z. R. Huang, Z. Y. Li, and J. R. Lombardi, A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect, Adv. Sci. 6(12), 1900310 (2019)
https://doi.org/10.1002/advs.201900310
20 Y. F. Shan, Z. H. Zheng, J. J. Liu, Y. Yong, Z. Y. Li, Z. R. Huang, and D. L. Jiang, Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate, npj Comput. Mater. 3(1), 11 (2017)
https://doi.org/10.1038/s41524-017-0008-0
21 D. Y. Qi, L. J. Lu, L. Z. Wang, and J. L. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling, J. Am. Chem. Soc. 136(28), 9886 (2014)
https://doi.org/10.1021/ja5052632
22 J. T. Xu, X. T. Li, Y. X. Wang, R. H. Guo, S. M. Shang, and S. X. Jiang, Flexible and reusable cap-like thin Fe2O3 film for SERS applications, Nano Res. 12(2), 381 (2019)
https://doi.org/10.1007/s12274-018-2227-1
23 C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photonics 3(7), 1164 (2016)
https://doi.org/10.1021/acsphotonics.6b00213
24 Z. H. Zheng, S. Cong, W. B. Gong, J. N. Xuan, G. H. Li, W. B. Lu, F. X. Geng, and Z. G. Zhao, Semiconductor SERS enhancement enabled by oxygen incorporation, Nat. Commun. 8(1), 1993 (2017)
https://doi.org/10.1038/s41467-017-02166-z
25 L. Tao, K. Chen, Z. F. Chen, C. X. Cong, C. Y. Qiu, J. J. Chen, X. M. Wang, H. Chen, T. Yu, W. G. Xie, S. Z. Deng, and J. B. Xu, 1Ttransition metal telluride atomic layers for plasmon-free SERS at femtomolar levels, J. Am. Chem. Soc. 140(28), 8696 (2018)
https://doi.org/10.1021/jacs.8b02972
26 X. J. Song, Y. Wang, F. Zhao, Q. C. Li, H. Q. Ta, M. H. Rümmeli, C. G. Tully, Z. Z. Li, W. J. Yin, L. T. Yang, K. B. Lee, J. Yang, I. Bozkurt, S. W. Liu, W. J. Zhang, and M. Chhowalla, Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials, ACS Nano 13(7), 8312 (2019)
https://doi.org/10.1021/acsnano.9b03761
27 Y. Yin, P. Miao, Y. M. Zhang, J. C. Han, X. H. Zhang, Y. Gong, L. Gu, C. Y. Xu, T. Yao, P. Xu, Y. Wang, B. Song, and S. Jin, Significantly increased Raman enhancement on MoX2 (X= S, Se) monolayers upon phase transition, Adv. Funct. Mater. 27(16), 1606694 (2017)
https://doi.org/10.1002/adfm.201606694
28 P. Miao, J. K. Qin, Y. F. Shen, H. M. Su, J. F. Dai, B. Song, Y. C. Du, M. T. Sun, W. Zhang, H. L. Wang, C. Y. Xu, and P. Xu, Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets, Small 14(14), 1704079 (2018)
https://doi.org/10.1002/smll.201704079
29 C. C. Weng, Y. Y. Luo, B. F. Wang, J. P. Shi, L. Gao, Z. Y. Cao, and G. T. Duan, Layer-dependent SERS enhancement of TiS2 prepared by simple electrochemical intercalation, J. Mater. Chem. C 8(40), 14138 (2020)
https://doi.org/10.1039/D0TC03683H
30 L. Quan, Y. Q. Song, Y. Lin, G. H. Zhang, Y. M. Dai, Y. K. Wu, K. Jin, H. Y. Ding, N. Pan, Y. Luo, and X. P. Wang, The Raman enhancement effect on a thin GaSe flake and its thickness dependence, J. Mater. Chem. C 3(42), 11129 (2015)
https://doi.org/10.1039/C5TC02209F
31 Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite, ACS Photonics 5(4), 1619 (2018)
https://doi.org/10.1021/acsphotonics.8b00152
32 X. Y. Su, H. Ma, H. Wang, X. L. Li, X. X. Han, and B. Zhao, Surface-enhanced Raman scattering on organicinorganic hybrid perovskites, Chem. Commun. 54(17), 2134 (2018)
https://doi.org/10.1039/C8CC00339D
33 X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. F. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553 (2010)
https://doi.org/10.1021/nl903414x
34 S. M. Feng, M. C. dos Santos, B. R. Carvalho, R. T. Lv, Q. Li, K. Fujisawa, A. L. Elias, Y. Lei, N. Perea-Lopez, M. Endo, M. H. Pan, M. A. Pimenta, and M. Terrones, Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering, Sci. Adv. 2(7), e1600322 (2016)
https://doi.org/10.1126/sciadv.1600322
35 H. Xu, L. M. Xie, H. L. Zhang, and J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene, ACS Nano 5(7), 5338 (2011)
https://doi.org/10.1021/nn103237x
36 H. H. Tian, N. Zhang, J. Zhang, and L. M. Tong, Exploring quantification in a mixture using graphene-based surface-enhanced Raman spectroscopy, Appl. Mater. Today 15, 288 (2019)
https://doi.org/10.1016/j.apmt.2019.01.008
37 R. Das, S. Parveen, A. Bora, and P. K. Giri, Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots, Carbon 160, 273 (2020)
https://doi.org/10.1016/j.carbon.2020.01.030
38 N. Zhang, L. M. Tong, and J. Zhang, Graphene-based enhanced Raman scattering toward analytical applications, Chem. Mater. 28(18), 6426 (2016)
https://doi.org/10.1021/acs.chemmater.6b02925
39 J. Liu, T. T. Zhang, and Y. Tian, Functionalized h- BN nanosheets as a theranostic platform for SERS realtime monitoring of microRNA and photodynamic therapy, Angew. Chem. Int. Ed. 58(23), 7757 (2019)
https://doi.org/10.1002/anie.201902776
40 X. Ling, W. J. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. X. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)
https://doi.org/10.1021/nl404610c
41 Q. R. Cai, S. Mateti, W. R. Wang, R. Jones, K. Watanabe, T. Taniguchi, S. M. Huang, Y. Chen, and L. H. Li, Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy, Angew. Chem. Int. Ed. 55(29), 8405 (2016)
https://doi.org/10.1002/anie.201600517
42 H. Z. Sun, S. Cong, Z. H. Zheng, Z. Wang, Z. G. Chen, and Z. G. Zhao, Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability, J. Am. Chem. Soc. 141(2), 870 (2019)
https://doi.org/10.1021/jacs.8b09414
43 T. H. Yu, C. H. Ho, C. Y. Wu, C. H. Chien, C. H. Lin, and S. Lee, Metal-organic frameworks: A novel SERS substrate, J. Raman Spectrosc. 44(11), 1506 (2013)
https://doi.org/10.1002/jrs.4378
44 J. H. Fu, Z. Zhong, D. Xie, Y. J. Guo, D. X. Kong, Z. X. Zhao, Z. X. Zhao, and M. Li, SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs, Angew. Chem. Int. Ed. 59(46), 20489 (2020)
https://doi.org/10.1002/anie.202002720
45 J. T. Xu, C. Cheng, S. M. Shang, W. Gao, P. Zeng, and S. X. Jiang, Flexible, reusable SERS substrate derived from ZIF-67 by adjusting LUMO and HOMO and its application in identification of bacteria, ACS Appl. Mater. Interfaces 12(44), 49452 (2020)
https://doi.org/10.1021/acsami.0c15754
46 M. Yilmaz, E. Babur, M. Ozdemir, R. L. Gieseking, Y. Dede, U. Tamer, G. C. Schatz, A. Facchetti, H. Usta, and G. Demirel, Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy, Nat. Mater. 16(9), 918 (2017)
https://doi.org/10.1038/nmat4957
47 G. Demirel, R. L. M. Gieseking, R. Ozdemir, S. Kahmann, M. A. Loi, G. C. Schatz, A. Facchetti, and H. Usta, Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity, Nat. Commun. 10(1), 5502 (2019)
https://doi.org/10.1038/s41467-019-13505-7
48 J. J. Lin, L. B. Liang, X. Ling, S. Q. Zhang, N. N. Mao, N. Zhang, B. G. Sumpter, V. Meunier, L. M. Tong, and J. Zhang, Enhanced Raman scattering on in-plane anisotropic layered materials, J. Am. Chem. Soc. 137(49), 15511 (2015)
https://doi.org/10.1021/jacs.5b10144
49 A. Kundu, R. Rani, and K. S. Hazra, Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation, Nanoscale 11(35), 16245 (2019)
https://doi.org/10.1039/C9NR02615K
50 R. Wang, X. Y. Yan, B. C. Ge, J. X. Zhou, M. L. Wang, L. X. Zhang, and T. F. Jiao, Facile preparation of self-assembled black phosphorus-dye composite films for chemical gas sensors and surface-enhanced Raman scattering performances, ACS Sustain. Chem. & Eng. 8(11), 4521 (2020)
https://doi.org/10.1021/acssuschemeng.9b07840
51 L. Hu, M. N. Amini, Y. Y. Wu, Z. Y. Jin, J. Yuan, R. B. Lin, J. H. Wu, Y. M. Dai, H. P. He, Y. F. Lu, J. G. Lu, Z. Z. Ye, S. T. Han, J. Ye, B. Partoens, Y. J. Zeng, and S. C. Ruan, Charge transfer doping modulated Raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod, Adv. Opt. Mater. 6(15), 1800440 (2018)
https://doi.org/10.1002/adom.201800440
52 T. B. Limbu, B. Chitara, J. D. Orlando, M. Y. G. Cervantes, S. Kumari, Q. Li, Y. A. Tang, and F. Yan, Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity, J. Mater. Chem. C 8(14), 4722 (2020)
https://doi.org/10.1039/C9TC06984D
53 G. H. Li, W. B. Gong, T. L. Qiu, S. Cong, Z. G. Zhao, R. Z. Ma, Y. Michiue, T. Sasaki, and F. X. Geng, Surfacemodified two-dimensional titanium carbide sheets for intrinsic vibrational signal-retained surface-enhanced Raman scattering with ultrahigh uniformity, ACS Appl. Mater. Interfaces 12(20), 23523 (2020)
https://doi.org/10.1021/acsami.0c00908
54 B. Soundiraraju and B. K. George, Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate, ACS Nano 11(9), 8892 (2017)
https://doi.org/10.1021/acsnano.7b03129
55 A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan, H. Minassian, M. Yoshimura, and Y. Gogotsi, Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C 121(36), 19983 (2017)
https://doi.org/10.1021/acs.jpcc.7b08180
56 K. Y. Chen, X. Y. Yan, J. K. Li, T. F. Jiao, C. Cai, G. D. Zou, R. Wang, M. L. Wang, L. X. Zhang, and Q. M. Peng, Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surfaceenhanced Raman scattering characterization, Nanomaterials (Basel) 9(2), 284 (2019)
https://doi.org/10.3390/nano9020284
57 S. Elumalai, J. R. Lombardi, and M. Yoshimura, The surface-enhanced resonance Raman scattering of dye molecules adsorbed on two-dimensional titanium carbide Ti3C2Tx (MXene) film, Mater. Adv. 1(2), 146 (2020)
https://doi.org/10.1039/D0MA00091D
58 Y. S. Peng, P. Cai, L. L. Yang, Y. Y. Liu, L. F. Zhu, Q. Q. Zhang, J. J. Liu, Z. R. Huang, and Y. Yang, Theoretical and experimental studies of Ti3C2 MXene for surface-enhanced Raman spectroscopy-based sensing, ACS Omega 5(41), 26486 (2020)
https://doi.org/10.1021/acsomega.0c03009
59 I. Alessandri and J. R. Lombardi, Enhanced Raman scattering with dielectrics, Chem. Rev. 116(24), 14921 (2016)
https://doi.org/10.1021/acs.chemrev.6b00365
60 X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, Green light stimulates terahertz emission from mesocrystal microspheres, Nat. Nanotechnol. 6(2), 103 (2011)
https://doi.org/10.1038/nnano.2010.264
61 J. Seo, J. Lee, Y. Kim, D. Koo, G. Lee, and H. Park, Ultrasensitive plasmon-free surface-enhanced Raman spectroscopy with femtomolar detection limit from 2D van der Waals heterostructure, Nano Lett. 20(3), 1620 (2020)
https://doi.org/10.1021/acs.nanolett.9b04645
62 X. X. Han, W. Ji, B. Zhao, and Y. Ozaki, Semiconductorenhanced Raman scattering: Active nanomaterials and applications, Nanoscale 9(15), 4847 (2017)
https://doi.org/10.1039/C6NR08693D
63 N. Chen, T. H. Xiao, Z. Y. Luo, Y. Kitahama, K. Hiramatsu, N. Kishimoto, T. Itoh, Z. Z. Cheng, and K. Goda, Porous carbon nanowire array for surface-enhanced Raman spectroscopy, Nat. Commun. 11(1), 4772 (2020)
https://doi.org/10.1038/s41467-020-18590-7
64 X. C. Fan, M. Z. Li, Q. Hao, M. S. Zhu, X. Y. Hou, H. Huang, L. B. Ma, O. G. Schmidt, and T. Qiu, High SERS sensitivity enabled by synergistically enhanced photoinduced charge transfer in amorphous nonstoichiometric semiconducting films, Adv. Mater. Interfaces 6(19), 1901133 (2019)
https://doi.org/10.1002/admi.201901133
65 X. T. Wang, W. X. Shi, Z. Jin, W. F. Huang, J. Lin, G. S. Ma, S. Z. Li, and L. Guo, Remarkable SERS activity observed from amorphous ZnO nanocages, Angew. Chem. Int. Ed. 56(33), 9851 (2017)
https://doi.org/10.1002/anie.201705187
66 X. T. Wang, W. X. Shi, S. X. Wang, H. W. Zhao, J. Lin, Z. Yang, M. Chen, and L. Guo, Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity, J. Am. Chem. Soc. 141(14), 5856 (2019)
https://doi.org/10.1021/jacs.9b00029
67 M. Z. Li, X. C. Fan, Y. M. Gao, and T. Qiu, W18O49/Monolayer MoS2 heterojunction-enhanced Raman scattering, J. Phys. Chem. Lett. 10(14), 4038 (2019)
https://doi.org/10.1021/acs.jpclett.9b00972
68 Y. Tan, L. N. Ma, Z. B. Gao, M. Chen, and F. Chen, Twodimensional heterostructure as a platform for surfaceenhanced Raman scattering, Nano Lett. 17(4), 2621 (2017)
https://doi.org/10.1021/acs.nanolett.7b00412
69 J. Lin, W. Hao, Y. Shang, X. T. Wang, D. L. Qiu, G. S. Ma, C. Chen, S. Z. Li, and L. Guo, Direct experimental observation of facet-dependent SERS of Cu2O polyhedra, Small 14(8), 1703274 (2018)
https://doi.org/10.1002/smll.201703274
70 Y. Q. Yu, J. J. Du, and C. Y. Jing, Remarkable surface-enhanced Raman scattering on self-assembled [201] anatase, J. Mater. Chem. C 7(45), 14239 (2019)
https://doi.org/10.1039/C9TC05062K
71 X. X. Li, Y. Shang, J. Lin, A. R. Li, X. T. Wang, B. Li, and L. Guo, Temperature-induced stacking to create Cu2O Concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering, Adv. Funct. Mater. 28(33), 1801868 (2018)
https://doi.org/10.1002/adfm.201801868
72 W. W. Li, L. Xiong, N. C. Li, S. Pang, G. L. Xu, C. H. Yi, Z. X. Wang, G. Q. Gu, K. W. Li, W. M. Li, L. Wei, G. Y. Li, C. L. Yang, and M. Chen, Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection, J. Mater. Chem. C 7(33), 10179 (2019)
https://doi.org/10.1039/C9TC03715B
73 L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, A new Dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities, Adv. Mater. 24(44), 5934 (2012)
https://doi.org/10.1002/adma.201201987
74 P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response, Nanoscale 8(18), 9721 (2016)
https://doi.org/10.1039/C5NR07965A
75 B. J. Messinger, K. U. Raben, R. K. Chang, and P. W. Barber, Local fields at the surface of noble-metal microspheres, Phys. Rev. B 24(2), 649 (1981)
https://doi.org/10.1103/PhysRevB.24.649
76 S. M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, and M. Akinc, Mie scattering effects from monodispersed ZnS nanospheres, J. Appl. Phys. 83(12), 7860 (1998)
https://doi.org/10.1063/1.367961
77 W. Ji, L. F. Li, W. Song, X. N. Wang, B. Zhao, and Y. Ozaki, Enhanced Raman scattering by ZnO superstructures: Synergistic effect of charge-transfer and Mie resonances, Angew. Chem. Int. Ed. 58(41), 14452 (2019)
https://doi.org/10.1002/anie.201907283
78 S. Hayashi, R. Koh, Y. Ichiyama, and K. Yamamoto, Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles, Phys. Rev. Lett. 60(11), 1085 (1988)
https://doi.org/10.1103/PhysRevLett.60.1085
79 I. Alessandri, Enhancing Raman scattering without plasmons: Unprecedented sensitivity achieved by TiO2 shellbased resonators, J. Am. Chem. Soc. 135(15), 5541 (2013)
https://doi.org/10.1021/ja401666p
80 N. Bontempi, I. Vassalini, S. Danesi, and I. Alessandri, ZORRO: Zirconium oxide resonators for all-in-one Raman and whispering-gallery-mode optical sensing, Chem. Commun. 53(75), 10382 (2017)
https://doi.org/10.1039/C7CC06357A
81 I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Alvarez-Puebla, and F. Meseguer, Silicon nanoparticles as Raman scattering enhancers, Nanoscale 6(11), 5666 (2014)
https://doi.org/10.1039/C4NR00593G
82 P. K. A. Campion and P. Kambhampati, Surfaceenhanced Raman scattering, Chem. Soc. Rev. 27(4), 241 (1998)
https://doi.org/10.1039/a827241z
83 L. Jensen, C. M. Aikens, and G. C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chem. Soc. Rev. 37(5), 1061 (2008)
https://doi.org/10.1039/b706023h
84 H. A. Kramers and W. Heisenberg, Über die streuung von strahlung durch atome, Z. Phys. 31(1), 681 (1925)
https://doi.org/10.1007/BF02980624
85 P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. R. Soc. Lond. A 114(767), 243 (1927)
https://doi.org/10.1098/rspa.1927.0039
86 Y. S. Yamamoto and T. Itoh, Why and how do the shapes of surface enhanced Raman scattering spectra change? Recent progress from mechanistic studies, J. Raman Spectrosc. 47(1), 78 (2016)
https://doi.org/10.1002/jrs.4874
87 J. I. Gersten, R. L. Birke, and J. R. Lombardi, Theory of enhance i light scattering from molecules adsorbed at the metal-solution interface, Phys. Rev. Lett. 43(2), 147 (1979)
https://doi.org/10.1103/PhysRevLett.43.147
88 E. Burstein, Y. J. Chen, C. Y. Chen, S. Lundquist, and E. Tosatti, “Giant” Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29(8), 567 (1979)
https://doi.org/10.1016/0038-1098(79)90665-3
89 J. E. Demuth and P. N. Sanda, Observation of chargetransfer states for pyridine chemisorbed on Ag(111), Phys. Rev. Lett. 47(1), 57 (1981)
https://doi.org/10.1103/PhysRevLett.47.57
90 H. Yamada and Y. Yamamoto, Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors, Surf. Sci. 134(1), 71 (1983)
https://doi.org/10.1016/0039-6028(83)90312-6
91 H. Yamada, Y. Yamamoto, and N. Tani, Surfaceenhanced Raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide, Chem. Phys. Lett. 86(4), 397 (1982)
https://doi.org/10.1016/0009-2614(82)83531-8
92 A. C. Albrecht, On the theory of Raman intensities, J. Chem. Phys. 34(5), 1476 (1961)
https://doi.org/10.1063/1.1701032
93 J. R. Lombardi and R. L. Birke, Theory of surfaceenhanced Raman scattering in semiconductors, J. Phys. Chem. C 118(20), 11120 (2014)
https://doi.org/10.1021/jp5020675
94 J. R. Lombardi, The theory of surface-enhanced Raman scattering on semiconductor nanoparticles: Toward the optimization of SERS sensors, Faraday Discuss. 205, 105 (2017)
https://doi.org/10.1039/C7FD00138J
95 S. K. Islam, M. A. Sohel, and J. R. Lombardi, Coupled exciton and charge-transfer resonances in the Raman enhancement of phonon modes of CdSe quantum dots (QDs), J. Phys. Chem. C 118(33), 19415 (2014)
https://doi.org/10.1021/jp5051035
96 X. Y. Hou, X. Y. Zhang, Q. W. Ma, X. Tang, Q. Hao, Y. C. Cheng, and T. Qiu, Alloy engineering in fewlayer manganese phosphorus trichalcogenides for surfaceenhanced Raman scattering, Adv. Funct. Mater. 30(12), 1910171 (2020)
https://doi.org/10.1002/adfm.201910171
97 X. L. Wu, Y. F. Mei, G. G. Siu, K. L. Wong, K. Moulding, M. J. Stokes, C. L. Fu, and X. M. Bao, Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures, Phys. Rev. Lett. 86(14), 3000 (2001)
https://doi.org/10.1103/PhysRevLett.86.3000
98 X. L. Wu, S. J. Xiong, G. G. Siu, G. S. Huang, Y. F. Mei, Z. Y. Zhang, S. S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)
https://doi.org/10.1103/PhysRevLett.91.157402
99 J. Y. Fan, X. L. Wu, and T. Qiu, Experimental evidence for quantum confinement in 3C-SiC nanoparticles, Physics 34(8), 570 (2005)
100 J. Wang, S. J. Xiong, X. L. Wu, T. H. Li, and P. K. Chu, Glycerol-bonded 3C-SiC nanocrystal solid films exhibiting broad and stable violet to blue-green emission, Nano Lett. 10(4), 1466 (2010)
https://doi.org/10.1021/nl100407d
101 Q. T. Liu, D. Y. Liu, J. M. Li, and Y. B. Kuang, The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting, Front. Phys. 14(5), 53403 (2019)
https://doi.org/10.1007/s11467-019-0905-4
102 H. Wu, H. Wang, and G. H. Li, Metal oxide semiconductor SERS-active substrates by defect engineering, Analyst (Lond.) 142(2), 326 (2017)
https://doi.org/10.1039/C6AN01959E
103 L. L. Yang, Y. S. Peng, Y. Yang, J. J. Liu, Z. Y. Li, Y. F. Ma, Z. Zhang, Y. Q. Wei, S. Li, Z. R. Huang, and N. V. Long, Green and sensitive flexible semiconductor SERS substrates: Hydrogenated black TiO2 nanowires, ACS Appl. Nano Mater. 1(9), 4516 (2018)
https://doi.org/10.1021/acsanm.8b00796
104 P. Dharmalingam, K. Venkatakrishnan, and B. Tan, An atomic-defect enhanced Raman scattering (DERS) quantum probe for molecular level detection-breaking the SERS barrier, Appl. Mater. Today 16, 28 (2019)
https://doi.org/10.1016/j.apmt.2019.04.016
105 X. Y. Hou, X. C. Fan, P. H. Wei, and T. Qiu, Planar transition metal oxides SERS chips: A general strategy, J. Mater. Chem. C 7(36), 11134 (2019)
https://doi.org/10.1039/C9TC03195B
106 X. X. Xue, W. Ji, Z. Mao, Z. S. Li, W. D. Ruan, B. Zhao, and J. R. Lombardi, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles, Spectrochim. Acta A 95, 213 (2012)
https://doi.org/10.1016/j.saa.2012.04.101
107 P. Zuo, L. Jiang, X. Li, P. Ran, B. Li, A. S. Song, M. Y. Tian, T. B. Ma, B. S. Guo, L. T. Qu, and Y. F. Lu, Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement, Nanoscale 11(2), 485 (2019)
https://doi.org/10.1039/C8NR08785G
108 X. X. Xue, S. F. Mi, C. M. Zhao, and L. M. Chang, Investigation of surface-enhanced Raman scattering property of Ni doping ZnS nanocrystals, J. Nanosci. Nanotechnol. 19(12), 7748 (2019)
https://doi.org/10.1166/jnn.2019.16728
109 L. B. Yang, Y. Zhang, W. D. Ruan, B. Zhao, W. Q. Xu, and J. R. Lombardi, Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant, J. Raman Spectrosc. 41(7), 721 (2009)
https://doi.org/10.1002/jrs.2511
110 X. D. Zheng, F. Ren, S. P. Zhang, X. L. Zhang, H. Y. Wu, X. G. Zhang, Z. Xing, W. J. Qin, Y. Liu, and C. Z. Jiang, A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity, ACS Appl. Mater. Interfaces 9(16), 14534 (2017)
https://doi.org/10.1021/acsami.7b03839
111 S. Cong, Z. Wang, W. B. Gong, Z. G. Chen, W. B. Lu, J. R. Lombardi, and Z. G. Zhao, Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability, Nat. Commun. 10(1), 678 (2019)
https://doi.org/10.1038/s41467-019-08656-6
112 Y. R. Liu, Z. B. Gao, M. Chen, Y. Tian, and F. Chen, Enhanced Raman scattering of CuPc films on imperfect WSe2 monolayer correlated to exciton and chargetransfer resonances, Adv. Funct. Mater. 28(52), 1805710 (2018)
https://doi.org/10.1002/adfm.201805710
113 X. Y. Wang, J. Li, Y. H. Shen, and A. J. Xie, An assembled ordered W18O49 nanowire film with high SERS sensitivity and stability for the detection of RB, Appl. Surf. Sci. 504, 144073 (2020)
https://doi.org/10.1016/j.apsusc.2019.144073
114 N. Singh, J. Prakash, M. Misra, A. Sharma, and R. K. Gupta, Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds, ACS Appl. Mater. Interfaces 9(34), 28495 (2017)
https://doi.org/10.1021/acsami.7b07571
115 X. H. Li, Y. Wu, Y. H. Shen, Y. Sun, Y. Yang, and A. J. Xie, A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity, Appl. Surf. Sci. 427, 739 (2018)
https://doi.org/10.1016/j.apsusc.2017.08.091
116 X. X. Xue, W. Ji, Z. Mao, Z. S. Li, Z. N. Guo, B. Zhao, and C. Zhao, SERS study of Co-doped TiO2 nanoparticles, Chem. Res. Chin. Univ. 29(4), 751 (2013)
https://doi.org/10.1007/s40242-013-3051-5
117 L. B. Yang, X. Y. Qin, M. D. Gong, X. Jiang, M. Yang, X. L. Li, and G. Z. Li, Improving surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal Co doping, Spectrochim. Acta A 123, 224 (2014)
https://doi.org/10.1016/j.saa.2013.12.087
118 V. Kiran and S. Sampath, Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO2 obtained from titanium carbide: A visible-light-assisted renewable substrate, ACS Appl. Mater. Interfaces 4(8), 3818 (2012)
https://doi.org/10.1021/am300349k
119 H. J. Zhang, R. An, X. H. Ji, Y. H. Dong, F. Pan, C. Liu, and X. H. Lu, Effects of nitrogen doping on surface-enhanced Raman scattering (SERS) performance of bicrystalline TiO2 nanofibres, Chin. J. Chem. Eng. 26(3), 642 (2018)
https://doi.org/10.1016/j.cjche.2017.05.020
120 L. B. Yang, D. Yin, Y. Shen, M. Yang, X. L. Li, X. X. Han, X. Jiang, and B. Zhao, Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering, Phys. Chem. Chem. Phys. 19(28), 18731 (2017)
https://doi.org/10.1039/C7CP03399K
121 R. PrabhuB, K. Bramhaiah, K. K. Singh, and N. S. John, Single sea urchin-MoO3 nanostructure for surface enhanced Raman spectroscopy of dyes, Nanoscale Adv. 1(6), 2426 (2019)
https://doi.org/10.1039/C9NA00115H
122 J. Pan, M. Li, Y. Y. Luo, H. Wu, L. Zhong, Q. Wang, and G. H. Li, Synthesis and SERS activity of V2O5 nanoparticles, Appl. Surf. Sci. 333, 34 (2015)
https://doi.org/10.1016/j.apsusc.2015.01.242
123 M. Gao, J. C. Yao, Y. N. Quan, J. H. Yang, P. W. Huo, J. D. Dai, Y. S. Yan, and C. C. Ma, Neodymium doped zinc oxide for ultersensitive SERS substrate, J. Mater. Sci. Mater. Electron. 30(23), 20537 (2019)
https://doi.org/10.1007/s10854-019-02416-4
124 S. Yang, J. C. Yao, Y. N. Quan, M. Y. Hu, R. Su, M. Gao, D. L. Han, and J. H. Yang, Monitoring the chargetransfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology, Light Sci. Appl. 9(1), 117 (2020)
https://doi.org/10.1038/s41377-020-00361-0
125 P. Li, X. L. Wang, X. L. Zhang, L. X. Zhang, X. W. Yang, and B. Zhao, Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: Doping induced band-gap shrinkage, Front. Chem. 7, 144 (2019)
https://doi.org/10.3389/fchem.2019.00144
126 X. X. Xue, J. Zhang, L. Chen, C. M. Zhao, L. Wang, and L. M. Chang, Preparation and characterization of Zn1−xNixO nanoparticles: Application as a SERS substrate, J. Nanosci. Nanotechnol. 18(6), 4403 (2018)
https://doi.org/10.1166/jnn.2018.15241
127 X. X. Xue, W. D. Ruan, L. B. Yang, W. Ji, Y. F. Xie, L. Chen, W. Song, B. Zhao, and J. R. Lombardi, Surfaceenhanced Raman scattering of molecules adsorbed on Codoped ZnO nanoparticles, J. Raman Spectrosc. 43(1), 61 (2012)
https://doi.org/10.1002/jrs.2988
128 L. M. Chang, D. D. Xu, and X. X. Xue, Photoluminescence and Raman scattering study in ZnO:Mg nanocrystals, J. Mater. Sci. Mater. Electron. 27(1), 1014 (2016)
https://doi.org/10.1007/s10854-015-3846-x
129 R. Haldavnekar, K. Venkatakrishnan, and B. Tan, Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection, Nat. Commun. 9(1), 3065 (2018)
https://doi.org/10.1038/s41467-018-05237-x
130 J. Lin, J. Yu, O. U. Akakuru, X. T. Wang, B. Yuan, T. X. Chen, L. Guo, and A. G. Wu, Low temperatureboosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets, Chem. Sci. (Camb.) 11(35), 9414 (2020)
https://doi.org/10.1039/D0SC02712J
131 C. S. Liu, B. H. Li, C. H. Chen, J. W. Peng, and S. Lee, Enhancement in SERS intensities of azo dyes adsorbed on ZnO by plasma treatment, J. Raman Spectrosc. 45(5), 332 (2014)
https://doi.org/10.1002/jrs.4465
132 J. L. Hou, X. F. Jia, X. X. Xue, L. Chen, W. Song, W. Q. Xu, and B. Zhao, Surface-enhanced Raman scattering of molecules adsorbed on SnO2 nanoparticles, Chem. J. Chin. Univ. 33(1), 139 (2012)
133 X. Y. Zhou, D. Wu, Z. Jin, X. J. Song, X. F. Wang, and S. L. Suib, Significantly increased Raman enhancement on defect-rich O-incorporated 1T-MoS2 nanosheets, J. Mater. Sci. 55(34), 16374 (2020)
https://doi.org/10.1007/s10853-020-05172-7
134 X. Y. Hou, Q. Lin, Y. J. Wei, Q. Hao, Z. H. Ni, and T. Qiu, Surface-enhanced Raman scattering monitoring of oxidation states in defect-engineered two-dimensional transition metal dichalcogenides, J. Phys. Chem. Lett. 11(19), 7981 (2020)
https://doi.org/10.1021/acs.jpclett.0c02318
135 M. L. Chen, K. Li, Y. Y. Luo, J. P. Shi, C. C. Weng, L. Gao, and G. T. Duan, Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance, Phys. Chem. Chem. Phys. 22(9), 5145 (2020)
https://doi.org/10.1039/C9CP05930J
136 P. Ji, Z. Mao, Z. Wang, X. X. Xue, Y. Zhang, J. Lv, and X. M. Shi, Improved surface-enhanced Raman scattering properties of ZrO2 nanoparticles by Zn doping, Nanomaterials (Basel) 9(7), 983 (2019)
https://doi.org/10.3390/nano9070983
137 Y. M. Yang, T. Qiu, F. Kong, J. Y. Fan, H. L. Ou, Q. Y. Xu, and P. K. Chu, Interference effects on indium tin oxide enhanced Raman scattering, J. Appl. Phys. 111(3), 033110 (2012)
https://doi.org/10.1063/1.3684965
138 Y. M. Yang, K. L. Long, F. Kong, J. Y. Fan, and T. Qiu, Surface-enhanced Raman spectroscopy on transparent fume-etched ITO-glass surface, Appl. Surf. Sci. 309, 250 (2014)
https://doi.org/10.1016/j.apsusc.2014.05.022
139 L. Hu, Z. Xu, F. Long, J. Yuan, H. Li, A. Zhao, S. Han, N. Zhang, X. Liu, C. Ma, S. Ruan, and Y. Zeng, Direct bandgap opening in sodium-doped antimonene quantum dots: An emerging 2D semiconductor, Mater. Horiz. 7(6), 1588 (2020)
https://doi.org/10.1039/D0MH00440E
140 G. T. Wang, H. N. Wei, Y. Tian, M. M. Wu, Q. Q. Sun, Z. S. Peng, L. F. Sun, and M. Liu, Twin-ZnSe nanowires as surface enhanced Raman scattering substrate with significant enhancement factor upon defect, Opt. Express 28(13), 18843 (2020)
https://doi.org/10.1364/OE.388439
141 I. C. Y. Chang, Y. S. Sun, Y. W. Yang, C. H. Wang, S. L. Cheng, and W. W. Hu, Effects of graphitization and bonding configuration in iron-nitrogen-doped carbon nanostructures on surface-enhanced Raman scattering, ACS Appl. Nano Mater. 3(1), 858 (2020)
https://doi.org/10.1021/acsanm.9b02363
142 Y. Gao, N. Gao, H. D. Li, X. X. Yuan, Q. L. Wang, S. H. Cheng, and J. S. Liu, Semiconductor SERS of diamond, Nanoscale 10(33), 15788 (2018)
https://doi.org/10.1039/C8NR04465A
143 S. S. Wen, X. W. Ma, H. Liu, G. Chen, H. Wang, G. Q. Deng, Y. T. Zhang, W. Song, B. Zhao, and Y. Ozaki, Accurate monitoring platform for the surface catalysis of nanozyme validated by surface-enhanced Raman-kinetics model, Anal. Chem. 92(17), 11763 (2020)
https://doi.org/10.1021/acs.analchem.0c01886
144 Y. Tian, H. N. Wei, Y. J. Xu, Q. Q. Sun, B. Y. Man, and M. Liu, Influence of SERS activity of SnSe2 nanosheets doped with sulfur, Nanomaterials (Basel) 10(10), 1910 (2020)
https://doi.org/10.3390/nano10101910
145 J. E. Medvedeva, D. B. Buchholz, and R. P. H. Chang, Recent Advances in understanding the structure and properties of amorphous oxide semiconductors, Adv. Electron. Mater. 3(9), 1700082 (2017)
https://doi.org/10.1002/aelm.201700082
146 A. R. Li, J. Lin, Z. N. Huang, X. T. Wang, and L. Guo, Surface-enhanced Raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates, iScience 10, 1 (2018)
https://doi.org/10.1016/j.isci.2018.11.017
147 A. R. Li, J. Yu, J. Lin, M. Chen, X. T. Wang, L. Guo, and O. Increased, Increased O 2p state density enabling significant photoinduced charge transfer for surface-enhanced Raman scattering of amorphous Zn(OH)2, J. Phys. Chem. Lett. 11(5), 1859 (2020)
https://doi.org/10.1021/acs.jpclett.0c00187
148 M. S. Gao, P. Miao, X. J. Han, C. Sun, Y. Ma, Y. L. Gao, and P. Xu, Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy, Inorg. Chem. Front. 6(9), 2318 (2019)
https://doi.org/10.1039/C9QI00579J
149 L. L. Yang, Y. Q. Wei, Y. S. Song, Y. S. Peng, Y. Yang, and Z. R. Huang, Surface-enhanced Raman scattering from amorphous nanoflower-structural Nb2O5 fabricated by two-step hydrothermal technology, Mater. Des. 193, 108808 (2020)
https://doi.org/10.1016/j.matdes.2020.108808
150 E. Er, H. L. Hou, A. Criado, J. Langer, M. Moller, N. Erk, L. M. Liz-Marzan, and M. Prato, High-yield preparation of exfoliated 1T-MoS2 with SERS activity, Chem. Mater. 31(15), 5725 (2019)
https://doi.org/10.1021/acs.chemmater.9b01698
151 C. L. Tan, Z. M. Luo, A. Chaturvedi, Y. Q. Cai, Y. H. Du, Y. Gong, Y. Huang, Z. C. Lai, X. Zhang, L. R. Zheng, X. Y. Qi, M. H. Goh, J. Wang, S. K. Han, X. J. Wu, L. Gu, C. Kloc, and H. Zhang, Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution, Adv. Mater. 30(9), 1705509 (2018)
https://doi.org/10.1002/adma.201705509
152 T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I. Lu, M. D. Valentin, S. A. Naghibi Alvillar, E. Preciado, A. J. Berges, C. S. Merida, M. Gomez, S. Bobek, M. Isarraraz, E. J. Reed, and L. Bartels, Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T, and 1T phases: Tunable properties of MoTe2 films, ACS Nano 11(1), 900 (2017)
https://doi.org/10.1021/acsnano.6b07499
153 P. Miao, J. Wu, Y. C. Du, Y. C. Sun, and P. Xu, Phase transition induced Raman enhancement on vanadium dioxide (VO2) nanosheets, J. Mater. Chem. C 6(40), 10855 (2018)
https://doi.org/10.1039/C8TC04269A
154 D. R. Miller, S. A. Akbar, and P. A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review, Sens. Actuators B Chem. 204, 250 (2014)
https://doi.org/10.1016/j.snb.2014.07.074
155 T. Q. Niu, J. Lu, X. G. Jia, Z. Xu, M. C. Tang, D. Barrit, N. Y. Yuan, J. N. Ding, X. Zhang, Y. Y. Fan, T. Luo, Y. L. Zhang, D. Smilgies, Z. K. Liu, A. Amassian, S. Y. Jin, K. Zhao, and S. Z. Liu, Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells, Nano Lett. 19(10), 7181 (2019)
https://doi.org/10.1021/acs.nanolett.9b02781
156 S. A. Ghopry, M. A. Alamri, R. Goul, R. Sakidja, and J. Z. Wu, Extraordinary sensitivity of surface-enhanced Raman spectroscopy of molecules on MoS2 (WS2) nanodomes/graphene van der Waals heterostructure substrates, Adv. Opt. Mater. 7(8), 1801249 (2019)
https://doi.org/10.1002/adom.201801249
157 Q. Cai, W. Gan, A. Falin, K. Watanabe, T. Taniguchi, J. C. Zhuang, W. C. Hao, S. M. Huang, T. Tao, Y. Chen, and L. H. Li, Two-dimensional van der Waals heterostructures for synergistically improved surface-enhanced Raman spectroscopy, ACS Appl. Mater. Interfaces 12(19), 21985 (2020)
https://doi.org/10.1021/acsami.0c01157
158 H. Kitadai, X. Z. Wang, N. N. Mao, S. X. Huang, and X. Ling, Enhanced Raman scattering on nine 2D van der Waals materials, J. Phys. Chem. Lett. 10(11), 3043 (2019)
https://doi.org/10.1021/acs.jpclett.9b01146
159 J. Lin, W. Z. Ren, A. R. Li, C. Y. Yao, T. X. Chen, X. H. Ma, X. T. Wang, and A. G. Wu, Crystal-amorphous coreshell structure synergistically enabling TiO2 nanoparticles’ remarkable SERS sensitivity for cancer cell imaging, ACS Appl. Mater. Interfaces 12(4), 4204 (2020)
https://doi.org/10.1021/acsami.9b17150
160 K. N. Zhang, Y. Zhang, T. N. Zhang, W. J. Dong, T. X. Wei, Y. Sun, X. Chen, G. Z. Zhen, and N. Dai, Vertically coupling ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission, Nano Res. 8(3), 743 (2015)
https://doi.org/10.1007/s12274-014-0557-1
161 L. G. Quagliano, Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering, J. Am. Chem. Soc. 126(23), 7393 (2004)
https://doi.org/10.1021/ja031640f
162 M. Dandu, K. Watanabe, T. Taniguchi, A. K. Sood, and K. Majumdar, Spectrally tunable, large Raman enhancement from nonradiative energy transfer in the van der Waals heterostructure, ACS Photon. 7(2), 519 (2020)
https://doi.org/10.1021/acsphotonics.9b01648
163 M. P. Chen, B. Ji, Z. Y. Dai, X. Y. Du, B. C. He, G. Chen, D. Liu, S. Chen, K. H. Lo, S. P. Wang, B. P. Zhou, and H. Pan, Vertically-aligned 1T/2H-MS2 (M= Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity, Appl. Surf. Sci. 527, 146769 (2020)
https://doi.org/10.1016/j.apsusc.2020.146769
164 S. G. Pan, X. H. Liu, and X. Wang, Preparation of Ag2Sgraphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity, Mater. Charact. 62(11), 1094 (2011)
https://doi.org/10.1016/j.matchar.2011.08.004
165 J. L. Lopes, S. Fateixa, A. C. Estrada, J. D. Gouveia, J. R. B. Gomes, and T. Trindade, Surface-enhanced Raman scattering due to a synergistic effect on ZnS and graphene oxide, J. Phys. Chem. C 124(23), 12742 (2020)
https://doi.org/10.1021/acs.jpcc.0c02135
166 I. Alessandri, and L. E. Depero, All-oxide Raman-active traps for light and matter: Probing redox homeostasis model reactions in aqueous environment, Small 10(7), 1294 (2014)
https://doi.org/10.1002/smll.201303166
167 D. Papadakis, A. Diamantopoulou, P. A. Pantazopoulos, D. Palles, E. Sakellis, N. Boukos, N. Stefanou, and V. Likodimos, Nanographene oxide-TiO2 photonic films as plasmon-free substrates for surface-enhanced Raman scattering, Nanoscale 11(44), 21542 (2019)
https://doi.org/10.1039/C9NR07680H
168 T. T. Zheng, E. D. Feng, Z. Q. Wang, X. Q. Gong, and Y. Tian, Mechanism of surface-enhanced Raman scattering based on 3D graphene-TiO2 nanocomposites and application to real-time monitoring of telomerase activity in differentiation of stem cells, ACS Appl. Mater. Interfaces 9(42), 36596 (2017)
https://doi.org/10.1021/acsami.7b11028
169 R. C. Wang, Y. H. Chen, H. H. Huang, K. T. Lin, Y. S. Jheng, and C. Y. Liu, Justification of dipole mechanism over chemical charge transfer mechanism for dipole-based SERS platform with excellent chemical sensing performance, Appl. Surf. Sci. 521, 146426 (2020)
https://doi.org/10.1016/j.apsusc.2020.146426
170 B. C. Qiu, M. Y. Xing, Q. Y. Yi, and J. L. Zhang, Chiral carbonaceous nanotubes modified with titania nanocrystals: plasmon-free and recyclable SERS sensitivity, Angew. Chem. Int. Ed. 54(36), 10643 (2015)
https://doi.org/10.1002/anie.201505319
171 X. Jiang, D. Yin, M. Yang, J. Du, W. E. Wang, L. Zhang, L. B. Yang, X. X. Han, and B. Zhao, Revealing interfacial charge transfer in TiO2/reduced graphene oxide nanocomposite by surface-enhanced Raman scattering (SERS): Simultaneous a superior SERS-active substrate, Appl. Surf. Sci. 487, 938 (2019)
https://doi.org/10.1016/j.apsusc.2019.05.122
172 X. Jiang, Q. Q. Sang, M. Yang, J. Du, W. E. Wang, L. B. Yang, X. X. Han, and B. Zhao, Metal-free SERS substrate based on rGO-TiO2-Fe3O4nnanohybrid: Contribution from interfacial charge transfer and magnetic controllability, Phys. Chem. Chem. Phys. 21(24), 12850 (2019)
https://doi.org/10.1039/C9CP02160D
173 E. D. Feng, T. T. Zheng, X. X. He, J. Q. Chen, and Y. Tian, A novel ternary heterostructure with dramatic SERS activity for evaluation of PD-L1 expression at the single-cell level, Sci. Adv. 4(11), eaau3494 (2018)
https://doi.org/10.1126/sciadv.aau3494
174 D. Yin, M. L. Wang, Y. Z. Wang, X. Hu, B. Liu, H. Liu, L. L. Ma, and G. G. Gao, A ternary ZnO/ZnS/MoS2 composite as a reusable SERS substrate derived from the polyoxomolybdate/ZIF-8 host–guest framework, J. Mater. Chem. C 7(32), 9856 (2019)
https://doi.org/10.1039/C9TC02967B
175 Y. N. Quan, J. C. Yao, Y. S. Sun, X. Qu, R. Su, M. Y. Hu, L. Chen, Y. Liu, M. Gao, and J. H. Yang, Enhanced semiconductor charge-transfer resonance: Unprecedented oxygen bidirectional strategy, Sens. Actuators B Chem. 327, 128903 (2021)
https://doi.org/10.1016/j.snb.2020.128903
176 Y. N. Quan, J. C. Yao, S. Yang, L. Chen, J. Li, Y. Liu, J. Lang, H. Shen, Y. Wang, Y. Wang, J. Yang, and M. Gao, ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A, Mikrochim. Acta 186(8), 593 (2019)
https://doi.org/10.1007/s00604-019-3702-4
177 H. W. Qiu, M. Q. Wang, L. Zhang, M. H. Cao, Y. Q. Ji, S. Kou, J. J. Dou, X. Q. Sun, and Z. Yang, Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement, Sens. Actuators B Chem. 320, 128445 (2020)
https://doi.org/10.1016/j.snb.2020.128445
178 M. Y. Xin, Y. Z. Fu, Y. Zhou, J. H. Han, Y. L. Mao, M. J. Li, J. H. Liu, and M. J. Huang, The surface-enhanced Raman scattering of all-inorganic perovskite quantum dots of CsPbBr3 encapsulated in a ZIF-8 metal-organic framework, New J. Chem. 44(40), 17570 (2020)
https://doi.org/10.1039/D0NJ03587D
179 G. Liu, J. C. Yu, G. Q. Lu, and H. M. Cheng, Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties, Chem. Commun. (Camb.) 47(24), 6763 (2011)
https://doi.org/10.1039/c1cc10665a
180 X. Gao and T. Zhang, An overview: Facet-dependent metal oxide semiconductor gas sensors, Sens. Actuators B Chem. 277, 604 (2018)
https://doi.org/10.1016/j.snb.2018.08.129
181 F. Wang, X. Wang, Z. Chang, Y. Zhu, L. Fu, X. Liu, and Y. Wu, Electrode materials with tailored facets for electrochemical energy storage, Nanoscale Horiz. 1(4), 272 (2016)
https://doi.org/10.1039/C5NH00116A
182 I. Urdaneta, A. Keller, O. Atabek, J. L. Palma, D. Finkelstein-Shapiro, P. Tarakeshwar, V. Mujica, and M. Calatayud, Dopamine adsorption on TiO2 anatase surfaces, J. Phys. Chem. C 118(35), 20688 (2014)
https://doi.org/10.1021/jp506156e
183 X. L. Zheng, H. L. Guo, Y. Xu, J. L. Zhang, and L. Z. Wang, Improving SERS sensitivity of TiO2 by utilizing the heterogeneity of facet-potentials, J. Mater. Chem. C 8(39), 13836 (2020)
https://doi.org/10.1039/D0TC03922E
184 J. L. Wang, F. Xiao, J. Yan, Z. Wu, K. K. Liu, Z. F. Chang, R. B. Zhang, H. Chen, H. B. Wu, and Y. Cao, Difluorobenzothiadiazole-based small-molecule organic solar cells with 8.7% efficiency by tuning of- conjugated spacers and solvent vapor annealing, Adv. Funct. Mater. 26(11), 1803 (2016)
https://doi.org/10.1002/adfm.201505020
185 C. L. Zhou, L. F. Sun, F. Q. Zhang, C. J. Gu, S. W. Zeng, T. Jiang, X. Shen, D. S. Ang, and J. Zhou, Electrical tuning of the SERS enhancement by precise defect density control, ACS Appl. Mater. Interfaces 11(37), 34091 (2019)
https://doi.org/10.1021/acsami.9b10856
186 P. Li, X. L. Wang, H. Y. Li, X. W. Yang, X. L. Zhang, L. X. Zhang, Y. Ozaki, B. B. Liu, and B. Zhao, Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering, Chem. Commun. (Camb.) 54(49), 6280 (2018)
https://doi.org/10.1039/C8CC01850B
187 H. H. Sun, M. G. Yao, Y. P. Song, L. Y. Zhu, J. J. Dong, R. Liu, P. Li, B. Zhao, and B. B. Liu, Pressureinduced SERS enhancement in a MoS2/Au/R6G system by a two-step charge transfer process, Nanoscale 11(44), 21493 (2019)
https://doi.org/10.1039/C9NR07098B
188 X. H. Li, S. H. Guo, J. Su, X. G. Ren, and Z. Y. Fang, Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing, ACS Appl. Mater. Interfaces 12(25), 28474 (2020)
https://doi.org/10.1021/acsami.0c04151
189 Y. Y. Qiu, M. Lin, G. X. Chen, C. C. Fan, M. W. Li, X. J. Gu, S. Cong, Z. G. Zhao, L. Fu, X. H. Fang, and Z. Y. Xiao, Photodegradable CuS SERS probes for intraoperative residual tumor detection, ablation, and selfclearance,ACS Appl. Mater. Interfaces 11(26), 23436 (2019)
https://doi.org/10.1021/acsami.9b00469
190 J. Surmacki, Nitrogen-doped titanium dioxide nanoparticles modified by an electron beam for improving human breast cancer detection by Raman spectroscopy: A preliminary study, Diagnostics (Basel) 10(10), 757 (2020)
https://doi.org/10.3390/diagnostics10100757
191 S. Ganesh, K. Venkatakrishnan, and B. Tan, Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression, Nat. Commun. 11(1), 1135 (2020)
https://doi.org/10.1038/s41467-020-14774-3
192 R. A. Alvarez-Puebla and L. M. Liz-Marzan, SERS detection of small inorganic molecules and ions, Angew. Chem. Int. Ed. 51(45), 11214 (2012)
https://doi.org/10.1002/anie.201204438
193 W. Ji, Y. Wang, I. Tanabe, X. X. Han, B. Zhao, and Y. Ozaki, Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium(vi) in water, Chem. Sci. (Camb.) 6(1), 342 (2015)
https://doi.org/10.1039/C4SC02618G
194 B. P. Majee, S. Mishra, R. K. Pandey, R. Prakash, and A. K. Mishra, Multifunctional few-layer MoS2 for photodetection and surface-enhanced Raman spectroscopy application with ultrasensitive and repeatable detectability, J. Phys. Chem. C 123(29), 18071 (2019)
https://doi.org/10.1021/acs.jpcc.9b04279
195 N. Bontempi, I. Vassalini, and I. Alessandri, All-dielectric core/shell resonators: From plasmon-free SERS to multimodal analysis, J. Raman Spectrosc. 49(6), 943 (2018)
https://doi.org/10.1002/jrs.5330
196 X. X. Han, C. Kohler, J. Kozuch, U. Kuhlmann, L. Paasche, A. Sivanesan, I. M. Weidinger, and P. Hildebrandt, Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: A case study on cytochrome b5, Small 9(24), 4175 (2013)
https://doi.org/10.1002/smll.201301070
197 I. Alessandri and L. E. Depero, All-oxide Raman-active traps for light and matter: Probing redox homeostasis model reactions in aqueous environment, Small 10(7), 1294 (2014)
https://doi.org/10.1002/smll.201303166
198 D. Glass, E. Cortes, S. Ben-Jaber, T. Brick, W. J. Peveler, C. S. Blackman, C. R. Howle, R. Quesada-Cabrera, I. P. Parkin, and S. A. Maier, Dynamics of photo-induced surface oxygen vacancies in metal-oxide semiconductors studied under ambient conditions, Adv. Mater. 6(22), 1901841 (2019)
https://doi.org/10.1002/advs.201901841
199 X. Y. Zhang, S. Yang, L. L. Yang, D. X. Zhang, Y. Sun, Z. Y. Pang, J. H. Yang, and L. Chen, Carrier dynamic monitoring of a p-conjugated polymer: A surface-enhanced Raman scattering method, Chem. Commun. 56(18), 2779 (2020)
https://doi.org/10.1039/C9CC09426A
200 P. Tarakeshwar, J. L. Palma, D. Finkelstein-Shapiro, A. Keller, I. Urdaneta, M. Calatayud, O. Atabek, and V. Mujjica, SERS as a probe of charge-transfer pathways in hybrid dye/molecule-metal oxide complexes, J. Phys. Chem. C 118(7), 3774 (2014)
https://doi.org/10.1021/jp410725w
201 Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
https://doi.org/10.1007/s11467-013-0338-4
202 X. Y. Hou, X. G. Luo, X. C. Fan, Z. H. Peng, and T. Qiu, Plasmon-coupled charge transfer in WO3−x semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms, Phys. Chem. Chem. Phys. 21(5), 2611 (2019)
https://doi.org/10.1039/C8CP07305H
203 W. Liu, H. Bai, X. S. Li, W. T. Li, J. F. Zhai, J. F. Li, and G. C. Xi, Improved surface-enhanced Raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface plasmon resonance coupling and charge transfer, J. Phys. Chem. Lett. 9(14), 4096 (2018)
https://doi.org/10.1021/acs.jpclett.8b01624
204 J. H. Wang, Y. H. Yang, H. Li, J. Gao, P. He, L. Bian, F. Q. Dong, and Y. He, Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surfaceenhanced Raman analysis, Chem. Sci. (Camb.) 10(25), 6330 (2019)
https://doi.org/10.1039/C9SC02202C
205 Z. Tian, H. Bai, C. Chen, Y. T. Ye, Q. H. Kong, Y. H. Li, W. H. Fan, W. C. Yi, and G. C. Xi, Quasi-metal for highly sensitive and stable surface-enhanced Raman scattering, iScience 19(27), 836 (2019)
https://doi.org/10.1016/j.isci.2019.08.040
206 X. J. Tan, L. Z. Wang, C. Cheng, X. F. Yan, B. Shen, and J. L. Zhang, Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshellisolated electromagnetic enhancement, Chem. Commun. (Camb.) 52(14), 2893 (2016)
https://doi.org/10.1039/C5CC10020H
207 Q. Q. Zhang, X. S. Li, Q. Ma, Q. Zhang, H. Bai, W. C. Yi, J. Y. Liu, J. Han, and G. C. Xi, A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy, Nat. Commun. 8(1), 14903 (2017)
https://doi.org/10.1038/ncomms14903
208 Q. Zhu, S. L. Jiang, K. Ye, W. Hu, J. C. Zhang, X. Y. Niu, Y. X. Lin, S. M. Chen, L. Song, Q. Zhang, J. Jiang, and Y. Luo, Hydrogen-doping-induced metal-like ultrahigh free-carrier concentration in metal-oxide material for giant and tunable plasmon resonance, Adv. Mater. 32(50), 2004059 (2020)
https://doi.org/10.1002/adma.202004059
209 P. Li, L. Zhu, C. Ma, L. X. Zhang, L. Guo, Y. W. Liu, H. Ma, and B. Zhao, Plasmonic molybdenum tungsten oxide hybrid with surface-enhanced Raman scattering comparable to that of noble metals, ACS Appl. Mater. Interfaces 12(16), 19153 (2020)
https://doi.org/10.1021/acsami.0c00220
210 Y. T. Ye, W. C. Yi, W. Liu, Y. Zhou, H. Bai, J. F. Li, and G. C. Xi, Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets, Sci. China Mater. 63(5), 794 (2020)
https://doi.org/10.1007/s40843-020-1283-8
211 H. M. Guan, W. C. Yi, T. Li, Y. H. Li, J. F. Li, H. Bai, and G. C. Xi, Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering, Nat. Commun. 11(1), 3889 (2020)
https://doi.org/10.1038/s41467-020-17628-0
212 F. T. Zhao, X. T. Xue, W. Y. Fu, Y. H. Liu, Y. H. Ling, and Z. J. Zhang, TiN nanorods as effective substrate for surface-enhanced Raman scattering, J. Phys. Chem. C 123(48), 29353 (2019)
https://doi.org/10.1021/acs.jpcc.9b09401
213 R. F. Du, W. C. Yi, W. T. Li, H. F. Yang, H. Bai, J. F. Li, and G. C. Xi, Quasi-metal microwave route to MoN and Mo2C ultrafine nanocrystalline hollow spheres as surface-enhanced Raman scattering substrates, ACS Nano 14(10), 13718 (2020)
https://doi.org/10.1021/acsnano.0c05935
214 A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, and D. J. Milliron, Localized surface plasmon resonance in semiconductor nanocrystals, Chem. Rev. 118(6), 3121 (2018)
https://doi.org/10.1021/acs.chemrev.7b00613
215 C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marago, E. Di Fabrizio, M. L. de la Chapelle, P. G. Gucciardi, and A. Pucci, Optical nanoantennas for multiband surface- Enhanced infrared and Raman spectroscopy, ACS Nano 7(4), 3522 (2013)
https://doi.org/10.1021/nn4004764
216 A. Pallaoro, G. B. Braun, N. O. Reich, and M. Moskovits, Mapping local pH in live cells using encapsulated fluorescent SERS nanotags, Small 6(5), 618 (2010)
https://doi.org/10.1002/smll.200901893
217 T. X. Huang, C. W. Li, L. K. Yang, J. F. Zhu, X. Yao, C. Liu, K. Q. Lin, Z. C. Zeng, S. S. Wu, X. Wang, F. Z. Yang, and B. Ren, Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime, Nanoscale 10(9), 4398 (2018)
https://doi.org/10.1039/C7NR08186C
218 H. S. Lai, G. K. Li, F. G. Xu, and Z. M. Zhang, Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering — a review, J. Mater. Chem. C 8(9), 2952 (2020)
https://doi.org/10.1039/D0TC00040J
219 Q. Q. Ding, J. Wang, X. Y. Chen, H. Liu, Q. J. Li, Y. L. Wang, and S. K. Yang, Quantitative and sensitive SERS platform with analyte enrichment and filtration function, Nano Lett. 20(10), 7304 (2020)
https://doi.org/10.1021/acs.nanolett.0c02683
220 J. Z. Chen, G. G. Liu, Y. Z. Zhu, M. Su, P. F. Yin, X. J. Wu, Q. P. Lu, C. L. Tan, M. T. Zhao, Z. Q. Liu, W. M. Yang, H. Li, G. H. Nam, L. P. Zhang, Z. H. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z. Q. Tian, J. F. Li, and H. Zhang, Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2, J. Am. Chem. Soc. 142(15), 7161 (2020)
https://doi.org/10.1021/jacs.0c01649
221 X. Zhao, J. Dong, E. Cao, Q. Y. Han, W. Gao, Y. K. Wang, J. X. Qi, and M. T. Sun, Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor, Appl. Mater. Today 14, 166 (2019)
https://doi.org/10.1016/j.apmt.2018.12.013
222 H. K. Lee, Y. H. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, C. L. Lay, H. Y. F. Sim, Y. C. Kao, Q. An, and X. Y. Ling, Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials, Chem. Soc. Rev. 48(3), 731 (2019)
https://doi.org/10.1039/C7CS00786H
223 X. Z. Qiao, B. S. Su, C. Liu, Q. Song, D. Luo, G. Mo, and T. Wang, Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure, Adv. Mater. 30(5), 1702275 (2018)
https://doi.org/10.1002/adma.201702275
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed