Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 44300   https://doi.org/10.1007/s11467-021-1049-x
  本期目录
Testing fundamental physics with astrophysical transients
Jun-Jie Wei1,2(), Xue-Feng Wu1,2()
1. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2. School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(1656 KB)  
Abstract

Explosive astrophysical transients at cosmological distances can be used to place precision tests of the basic assumptions of relativity theory, such as Lorentz invariance, the photon zero-mass hypothesis, and the weak equivalence principle (WEP). Signatures of Lorentz invariance violations (LIV) include vacuum dispersion and vacuum birefringence. Sensitive searches for LIV using astrophysical sources such as gamma-ray bursts, active galactic nuclei, and pulsars are discussed. The most direct consequence of a nonzero photon rest mass is a frequency dependence in the velocity of light propagating in vacuum. A detailed representation of how to obtain a combined severe limit on the photon mass using fast radio bursts at different redshifts through the dispersion method is presented. The accuracy of the WEP has been well tested based on the Shapiro time delay of astrophysical messengers traveling through a gravitational field. Some caveats of Shapiro delay tests are discussed. In this article, we review and update the status of astrophysical tests of fundamental physics.

Key wordsastroparticle physics    gravitation    astrophysical transients
收稿日期: 2020-11-30      出版日期: 2021-04-02
Corresponding Author(s): Jun-Jie Wei,Xue-Feng Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 44300.
Jun-Jie Wei, Xue-Feng Wu. Testing fundamental physics with astrophysical transients. Front. Phys. , 2021, 16(4): 44300.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1049-x
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/44300
1 R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59(12), 124021 (1999)
https://doi.org/10.1103/PhysRevD.59.124021
2 J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, Loop quantum gravity and light propagation, Phys. Rev. D 65(10), 103509 (2002)
https://doi.org/10.1103/PhysRevD.65.103509
3 G. Amelino-Camelia and D. V. Ahluwalia, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D 11(01), 35 (2002)
https://doi.org/10.1142/S0218271802001330
4 G. Amelino-Camelia, Special treatment, Nature 418(6893), 34 (2002)
https://doi.org/10.1038/418034a
5 J. Kowalski-Glikman, and S. Nowak, Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539(1–2), 126 (2002)
https://doi.org/10.1016/S0370-2693(02)02063-4
6 J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67(4), 044017 (2003)
https://doi.org/10.1103/PhysRevD.67.044017
7 V. A. Kostelecký and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39(2), 683 (1989)
https://doi.org/10.1103/PhysRevD.39.683
8 V. Alan Kostelecký and R. Potting, CPT and strings, Nucl. Phys. B 359(2–3), 545 (1991)
https://doi.org/10.1016/0550-3213(91)90071-5
9 V. A. Kostelecký and R. Potting, CPT, strings, and meson factories, Phys. Rev. D 51(7), 3923 (1995)
https://doi.org/10.1103/PhysRevD.51.3923
10 D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Relativ. 8(1), 5 (2005)
https://doi.org/10.12942/lrr-2005-5
11 R. Bluhm, Overview of the standard model extension: Implications and phenomenology of Lorentz violation, Special Relativity 702, 191 (2006)
https://doi.org/10.1007/3-540-34523-X_8
12 G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Relativ. 16(1), 5 (2013)
https://doi.org/10.12942/lrr-2013-5
13 J. D. Tasson, What do we know about Lorentz invariance? Rep. Prog. Phys. 77(6), 062901 (2014)
https://doi.org/10.1088/0034-4885/77/6/062901
14 V. A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83(1), 11 (2011)
https://doi.org/10.1103/RevModPhys.83.11
15 V. A. Kostelecký and M. Mewes, Astrophysical tests of Lorentz and CPT violation with Photons, Astrophys. J. 689(1), L1 (2008)
https://doi.org/10.1086/595815
16 G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393, 763 (1998)
https://doi.org/10.1038/31647
17 T. G. Pavlopoulos, Are we observing Lorentz violation in gamma ray bursts? Phys. Lett. B 625(1–2), 13 (2005)
https://doi.org/10.1016/j.physletb.2005.08.064
18 J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Robust limits on Lorentz violation from gamma-ray bursts, Astropart. Phys. 25(6), 402 (2006)
https://doi.org/10.1016/j.astropartphys.2006.04.001
19 U. Jacob and T. Piran, Lorentz-violation-induced arrival delays of cosmological particles, J. Cosmol. Astropart. Phys. 01, 031 (2008)
https://doi.org/10.1088/1475-7516/2008/01/031
20 V. A. Kostelecký and M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 80(1), 015020 (2009)
https://doi.org/10.1103/PhysRevD.80.015020
21 A. A. Abdo, M. Ackermann, M. Arimoto, et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323(5922), 1688 (2009)
22 A. A. Abdo, M. Ackermann, M. Ajello, et al., A limit on the variation of the speed of light arising from quantum gravity effects, Nature 462(7271), 331 (2009)
23 Z. Chang, Y. Jiang, and H. N. Lin, A unified constraint on the Lorentz invariance violation from both short and long GRBs, Astropart. Phys. 36(1), 47 (2012)
https://doi.org/10.1016/j.astropartphys.2012.04.006
24 R. J. Nemiroff, R. Connolly, J. Holmes, and A. B. Kostinski, Bounds on spectral dispersion from Fermi-detected gamma ray bursts, Phys. Rev. Lett. 108(23), 231103 (2012)
https://doi.org/10.1103/PhysRevLett.108.231103
25 V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F. W. Stecker, J. Cohen-Tanugi, and F. Longo, Constraints on Lorentz invariance violation from Fermi- Large area telescope observations of gammaray bursts, Phys. Rev. D 87(12), 122001 (2013)
https://doi.org/10.1103/PhysRevD.87.122001
26 J. Ellis and N. E. Mavromatos, Probes of Lorentz violation, Astropart. Phys. 43, 50 (2013)
https://doi.org/10.1016/j.astropartphys.2012.05.004
27 F. Kislat and H. Krawczynski, Search for anisotropic Lorentz invariance violation with γ-rays, Phys. Rev. D 92(4), 045016 (2015)
https://doi.org/10.1103/PhysRevD.92.045016
28 S. Zhang and B. Q. Ma, Lorentz violation from gammaray bursts, Astropart. Phys. 61, 108 (2015)
https://doi.org/10.1016/j.astropartphys.2014.04.008
29 J. J. Wei, B. B. Zhang, L. Shao, X. F. Wu, and P. Meszaros, A new test of Lorentz invariance violation: The spectral lag transition of GRB 160625B, Astrophys. J. 834(2), L13 (2017)
https://doi.org/10.3847/2041-8213/834/2/L13
30 J. J. Wei, X. F. Wu, B. B. Zhang, L. Shao, P. Meszaros, and V. A. Kostelecky, Constraining anisotropic Lorentz violation via the spectral-lag transition of GRB 160625B, Astrophys. J. 842(2), 115 (2017)
https://doi.org/10.3847/1538-4357/aa7630
31 J. J. Wei and X. F. Wu, A further test of Lorentz violation from the rest-frame spectral lags of gamma-ray bursts, Astrophys. J. 851(2), 127 (2017)
https://doi.org/10.3847/1538-4357/aa9d8d
32 J. Ellis, R. Konoplich, N. E. Mavromatos, L. Nguyen, A. S. Sakharov, and E. K. Sarkisyan-Grinbaum, Robust constraint on Lorentz violation using Fermi-LAT gammaray burst data, Phys. Rev. D 99(8), 083009 (2019)
https://doi.org/10.1103/PhysRevD.99.083009
33 V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, D. Baack, et al., Bounds on Lorentz invariance violation from magic observation of GRB 190114C, Phys. Rev. Lett. 125(2), 021301 (2020)
34 S. D. Biller, A. C. Breslin, J. Buckley, M. Catanese, M. Carson, D. A. Carter-Lewis, M. F. Cawley, D. J. Fegan, J. P. Finley, J. A. Gaidos, A. M. Hillas, F. Krennrich, R. C. Lamb, R. Lessard, C. Masterson, J. E. McEnery, B. McKernan, P. Moriarty, J. Quinn, H. J. Rose, F. Samuelson, G. Sembroski, P. Skelton, and T. C. Weekes, Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett. 83(11), 2108 (1999)
https://doi.org/10.1103/PhysRevLett.83.2108
35 P. Kaaret, Pulsar radiation and quantum gravity, Astron. Astrophys. 345, L32 (1999)
36 S. M. Carroll, G. B. Field, and R. Jackiw, Limits on a Lorentz- and parity-violating modification of electrodynamics, Phys. Rev. D 41(4), 1231 (1990)
https://doi.org/10.1103/PhysRevD.41.1231
37 D. Colladay and V. A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58(11), 116002 (1998)
https://doi.org/10.1103/PhysRevD.58.116002
38 R. J. Gleiser and C. N. Kozameh, Astrophysical limits on quantum gravity motivated birefringence, Phys. Rev. D 64(8), 083007 (2001)
https://doi.org/10.1103/PhysRevD.64.083007
39 V. A. Kostelecký and M. Mewes, Cosmological constraints on Lorentz violation in electrodynamics, Phys. Rev. Lett. 87(25), 251304 (2001)
https://doi.org/10.1103/PhysRevLett.87.251304
40 V. A. Kostelecký and M. Mewes, Sensitive polarimetric search for relativity violations in gamma-ray bursts, Phys. Rev. Lett. 97(14), 140401 (2006)
https://doi.org/10.1103/PhysRevLett.97.140401
41 V. A. Kostelecký and M. Mewes, Lorentz-violating electrodynamics and the cosmic microwave background, Phys. Rev. Lett. 99(1), 011601 (2007)
https://doi.org/10.1103/PhysRevLett.99.011601
42 V. A. Kostelecký and M. Mewes, Constraints on relativity violations from gamma-ray bursts, Phys. Rev. Lett. 110(20), 201601 (2013)
https://doi.org/10.1103/PhysRevLett.110.201601
43 I. G. Mitrofanov, A constraint on canonical quantum gravity? Nature 426, 139 (2003)
https://doi.org/10.1038/426139a
44 T. Jacobson, S. Liberati, D. Mattingly, and F. W. Stecker, New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93(2), 021101 (2004)
https://doi.org/10.1103/PhysRevLett.93.021101
45 Y. Z. Fan, D. M. Wei, and D. Xu, γ-ray burst ultraviolet/ optical afterglow polarimetry as a probe of quantum gravity, Mon. Not. R. Astron. Soc. 376(4), 1857 (2007)
https://doi.org/10.1111/j.1365-2966.2007.11576.x
46 G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri, and A. Cooray, A constraint on Planck-scale modifications to electrodynamics with CMB polarization data, J. Cosmol. Astropart. Phys. 08, 021 (2009)
https://doi.org/10.1088/1475-7516/2009/08/021
47 P. Laurent, D. Gotz, P. Binetruy, S. Covino, and A. Fernandez-Soto, Constraints on Lorentz invariance violation using integral/IBIS observations of GRB041219A, Phys. Rev. D 83(12), 121301 (2011)
https://doi.org/10.1103/PhysRevD.83.121301
48 F. W. Stecker, A new limit on Planck scale Lorentz violation from γ-ray burst polarization, Astropart. Phys. 35(2), 95 (2011)
https://doi.org/10.1016/j.astropartphys.2011.06.007
49 K. Toma, S. Mukohyama, D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, Y. Morihara, T. Sakashita, T. Takahashi, Y. Wakashima, H. Yonemochi, and N. Toukairin, Strict limit on CPT violation from polarization of γ-ray bursts, Phys. Rev. Lett. 109(24), 241104 (2012)
https://doi.org/10.1103/PhysRevLett.109.241104
50 D. Götz, S. Covino, A. Fernandez-Soto, P. Laurent, and Ž. Bošnjak, The polarized gamma-ray burst GRB 061122, Mon. Not. R. Astron. Soc. 431(4), 3550 (2013)
https://doi.org/10.1093/mnras/stt439
51 D. Götz, P. Laurent, S. Antier, S. Covino, P. D’Avanzo, V. D’Elia, and A. Melandri, GRB 140206A: the most distant polarized gamma-ray burst, Mon. Not. R. Astron. Soc. 444, 2776 (2014)
https://doi.org/10.1093/mnras/stu1634
52 H. N. Lin, X. Li, and Z. Chang, Gamma-ray burst polarization reduction induced by the Lorentz invariance violation, Mon. Not. R. Astron. Soc. 463(1), 375 (2016)
https://doi.org/10.1093/mnras/stw2007
53 F. Kislat and H. Krawczynski, Planck-scale constraints on anisotropic Lorentz and CPT invariance violations from optical polarization measurements, Phys. Rev. D 95(8), 083013 (2017)
https://doi.org/10.1103/PhysRevD.95.083013
54 A. S. Friedman, D. Leon, K. D. Crowley, D. Johnson, G. Teply, D. Tytler, B. G. Keating, and G. M. Cole, Constraints on Lorentz invariance and CPT violation using optical photometry and polarimetry of active galaxies BL Lacertae and S5 B 0716+ 714, Phys. Rev. D 99(3), 035045 (2019)
https://doi.org/10.1103/PhysRevD.99.035045
55 J. J. Wei, New constraints on Lorentz invariance violation with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 485(2), 2401 (2019)
https://doi.org/10.1093/mnras/stz594
56 A. S. Goldhaber and M. M. Nieto, Terrestrial and extraterrestrial limits on the photon mass, Rev. Mod. Phys. 43(3), 277 (1971)
https://doi.org/10.1103/RevModPhys.43.277
57 L. C. Tu, J. Luo, and G. T. Gillies, The mass of the photon, Rep. Prog. Phys. 68(1), 77 (2005)
https://doi.org/10.1088/0034-4885/68/1/R02
58 L. B. Okun, Photon: History, mass, charge, Acta Phys. Pol. B 37(3), 565 (2006)
59 A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys. 82(1), 939 (2010)
https://doi.org/10.1103/RevModPhys.82.939
60 G. Spavieri, J. Quintero, G. T. Gillies, and M. Rodriguez, A survey of existing and proposed classical and quantum approaches to the photon mass, Eur. Phys. J. D 61(3), 531 (2011)
https://doi.org/10.1140/epjd/e2011-10508-7
61 B. Lovell, F. L. Whipple, and L. H. Solomon, Relative velocity of light and radio waves in space, Nature 202 (4930), 377 (1964)
https://doi.org/10.1038/202377a0
62 B. Warner and R. E. Nather, Wavelength independence of the velocity of light in space, Nature 222(5189), 157 (1969)
https://doi.org/10.1038/222157b0
63 B. E. Schaefer, Severe limits on variations of the speed of light with frequency, Phys. Rev. Lett. 82(25), 4964 (1999)
https://doi.org/10.1103/PhysRevLett.82.4964
64 B. Zhang, Y. T. Chai, Y. C. Zou, and X. F. Wu, Constraining the mass of the photon with gamma-ray bursts, J. High Energy Astrophys. 11–12, 20 (2016)
https://doi.org/10.1016/j.jheap.2016.07.001
65 J. J. Wei, E. K. Zhang, S. B. Zhang, and X. F. Wu, New limits on the photon mass with radio pulsars in the Magellanic clouds, Res. Astron. Astrophys. 17(2), 13 (2017)
https://doi.org/10.1088/1674-4527/17/2/13
66 X. F. Wu, S. B. Zhang, H. Gao, J. J. Wei, Y. C. Zou, W. H. Lei, B. Zhang, Z. G. Dai, and P. Meszaros, Constraints on the photon mass with fast radio bursts, Astrophys. J. 822(1), L15 (2016)
https://doi.org/10.3847/2041-8205/822/1/L15
67 L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, Photon mass limits from fast radio bursts, Phys. Lett. B 757, 548 (2016)
https://doi.org/10.1016/j.physletb.2016.04.035
68 L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, FRB 121102 casts new light on the photon mass, Phys. Lett. B 768, 326 (2017)
https://doi.org/10.1016/j.physletb.2017.03.014
69 L. Shao and B. Zhang, Bayesian framework to constrain the photon mass with a catalog of fast radio bursts, Phys. Rev. D 95(12), 123010 (2017)
https://doi.org/10.1103/PhysRevD.95.123010
70 J. J. Wei and X. F. Wu, Robust limits on photon mass from statistical samples of extragalactic radio pulsars, J. Cosmol. Astropart. Phys. 07, 045 (2018)
https://doi.org/10.1088/1475-7516/2018/07/045
71 N. Xing, H. Gao, J. J. Wei, Z. Li, W. Wang, B. Zhang, X. F. Wu, and P. Meszaros, Limits on the weak equivalence principle and photon mass with FRB 121102 subpulses, Astrophys. J. 882(1), L13 (2019)
https://doi.org/10.3847/2041-8213/ab3c5f
72 J. J. Wei and X. F. Wu, Combined limit on the photon mass with nine localized fast radio bursts, Res. Astron. Astrophys. 20(12), 206 (2020)
https://doi.org/10.1088/1674-4527/20/12/206
73 E. R. Williams, J. E. Faller, and H. A. Hill, New experimental test of Coulomb’s law: A laboratory upper limit on the photon rest mass, Phys. Rev. Lett. 26(12), 721 (1971)
https://doi.org/10.1103/PhysRevLett.26.721
74 M. A. Chernikov, C. J. Gerber, H. R. Ott, and H. J. Gerber, Low-temperature upper limit of the photon mass: Experimental null test of Ampère’s law, Phys. Rev. Lett. 68(23), 3383 (1992)
https://doi.org/10.1103/PhysRevLett.68.3383
75 R. Lakes, Experimental limits on the photon mass and cosmic magnetic vector potential, Phys. Rev. Lett. 80(9), 1826 (1998)
https://doi.org/10.1103/PhysRevLett.80.1826
76 A. S. Goldhaber and M. M. Nieto, Problems of the rotating-torsion-balance limit on the photon mass, Phys. Rev. Lett. 91(14), 149101 (2003)
https://doi.org/10.1103/PhysRevLett.91.149101
77 J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, New experimental limit on the photon rest mass with a rotating torsion balance, Phys. Rev. Lett. 90(8), 081801 (2003)
https://doi.org/10.1103/PhysRevLett.90.081801
78 J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, Luo et al. reply, Phys. Rev. Lett. 91(14), 149102 (2003)
https://doi.org/10.1103/PhysRevLett.91.149102
79 D. D. Lowenthal, Limits on the photon mass, Phys. Rev. D 8(8), 2349 (1973)
https://doi.org/10.1103/PhysRevD.8.2349
80 A. Accioly and R. Paszko, Photon mass and gravitational deflection, Phys. Rev. D 69(10), 107501 (2004)
https://doi.org/10.1103/PhysRevD.69.107501
81 L. Davis, A. S. Goldhaber, and M. M. Nieto, Limit on the photon mass deduced from pioneer-10 observations of Jupiter’s magnetic field, Phys. Rev. Lett. 35(21), 1402 (1975)
https://doi.org/10.1103/PhysRevLett.35.1402
82 D. D. Ryutov, The role of finite photon mass in magnetohydrodynamics of space plasmas, Plasma Phys. Contr. Fusion 39(5A), A73 (1997)
https://doi.org/10.1088/0741-3335/39/5A/008
83 D. D. Ryutov, Using plasma physics to weigh the photon, Plasma Phys. Contr. Fusion 49(12B), B429 (2007)
https://doi.org/10.1088/0741-3335/49/12B/S40
84 A. Retinò, A. D. A. M. Spallicci, and A. Vaivads, Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data, Astropart. Phys. 82, 49 (2016)
https://doi.org/10.1016/j.astropartphys.2016.05.006
85 Y. Yamaguchi, A composite theory of elementary particles, Prog. Theor. Phys. Suppl. 11, 1 (1959)
https://doi.org/10.1143/PTPS.11.1
86 G. V. Chibisov, Astrophysical upper limits on the photon rest mass, Sov. Phys. Usp. 19(7), 624 (1976)
https://doi.org/10.1070/PU1976v019n07ABEH005277
87 E. Adelberger, G. Dvali, A. Gruzinov, Photon-mass bound destroyed by vortices, Phys. Rev. Lett. 98, 010402 (2007)
https://doi.org/10.1103/PhysRevLett.98.010402
88 P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi, Black-hole bombs and photon-mass bounds, Phys. Rev. Lett. 109(13), 131102 (2012)
https://doi.org/10.1103/PhysRevLett.109.131102
89 Y. P. Yang and B. Zhang, Tight constraint on photon mass from pulsar spindown, Astrophys. J. 842(1), 23 (2017)
https://doi.org/10.3847/1538-4357/aa74de
90 C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 9(1), 3 (2006)
https://doi.org/10.12942/lrr-2006-3
91 C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 17(1), 4 (2014)
https://doi.org/10.12942/lrr-2014-4
92 S. B. Lambert and C. Le Poncin-Lafitte, Determining the relativistic parameter γ using very long baseline interferometry, Astron. Astrophys. 499(1), 331 (2009)
https://doi.org/10.1051/0004-6361/200911714
93 S. B. Lambert and C. Le Poncin-Lafitte, Improved determination of γ by VLBI, Astron. Astrophys. 529, A70 (2011)
https://doi.org/10.1051/0004-6361/201016370
94 B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425(6956), 374 (2003)
https://doi.org/10.1038/nature01997
95 I. I. Shapiro, Fourth test of general relativity, Phys. Rev. Lett. 13(26), 789 (1964)
https://doi.org/10.1103/PhysRevLett.13.789
96 M. J. Longo, New precision tests of the Einstein equivalence principle from Sn1987a, Phys. Rev. Lett. 60(3), 173 (1988)
https://doi.org/10.1103/PhysRevLett.60.173
97 L. M. Krauss and S. Tremaine, Test of the weak equivalence principle for neutrinos and photons, Phys. Rev. Lett. 60(3), 176 (1988)
https://doi.org/10.1103/PhysRevLett.60.176
98 H. Gao, X. F. Wu, and P. Meszaros, Cosmic transients test Einstein’s equivalence principle out to GeV energies, Astrophys. J. 810(2), 121 (2015)
https://doi.org/10.1088/0004-637X/810/2/121
99 J. J. Wei, H. Gao, X. F. Wu, and P. Meszaros, Testing Einstein’s Equivalence Principle With Fast Radio Bursts, Phys. Rev. Lett. 115(26), 261101 (2015)
https://doi.org/10.1103/PhysRevLett.115.261101
100 X. F. Wu, H. Gao, J. J. Wei, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Testing Einstein’s weak equivalence principle with gravitational waves, Phys. Rev. D 94(2), 024061 (2016)
https://doi.org/10.1103/PhysRevD.94.024061
101 C. Yang, Y. C. Zou, Y. Y. Zhang, B. Liao, and W. H. Lei, Testing the Einstein’s equivalence principle with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 469(1), L36 (2017)
https://doi.org/10.1093/mnrasl/slx045
102 J. J. Wei and X. F. Wu, Precision test of the weak equivalence principle from gamma-ray burst polarization, Phys. Rev. D 99(10), 103012 (2019)
https://doi.org/10.1103/PhysRevD.99.103012
103 L. Smolin, How far are we from the quantum theory of gravity? arXiv: hep-th/0303185 (2003)
104 C. Rovelli, Loop quantum gravity, Living Rev. Relativ. 1(1), 1 (1998)
https://doi.org/10.12942/lrr-1998-1
105 L. Burderi, A. Sanna, T. Di Salvo, L. Amati, G. Amelino-Camelia, et al., ESA Voyage 2050 white paper – GrailQuest: Hunting for atoms of space and time hidden in the wrinkle of space-time, arXiv: 1911.02154 (2019)
106 J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Corrigendum to“Robust limits on Lorentz violation from gamma-ray bursts” [Astropart. Phys. 25, 402 (2006)], Astropart. Phys. 29(2), 158 (2008)
https://doi.org/10.1016/j.astropartphys.2007.12.003
107 J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and A. S. Sakharov, Quantum-gravity analysis of gamma-ray bursts using wavelets, Astron. Astrophys. 402(2), 409 (2003)
https://doi.org/10.1051/0004-6361:20030263
108 S. E. Boggs, C. B. Wunderer, K. Hurley, and W. Coburn, Testing Lorentz Invariance with GRB 021206, Astrophys. J. 611(2), L77 (2004)
https://doi.org/10.1086/423933
109 M. Rodriguez Martinez, T. Piran, Y. Oren, GRB 051221A and tests of Lorentz symmetry, J. Cosmol. Astropart. Phys. 05, 017 (2006)
https://doi.org/10.1088/1475-7516/2006/05/017
110 J. Bolmont, A. Jacholkowska, J. L. Atteia, F. Piron, and G. Pizzichini, Study of time lags in HETE‐2γ-ray bursts with redshift: Search for astrophysical effects and a quantum gravity signature, Astrophys. J. 676(1), 532 (2008)
https://doi.org/10.1086/527524
111 R. Lamon, N. Produit, and F. Steiner, Study of Lorentz violation in INTEGRAL gamma-ray bursts, Gen. Relativ. Gravit. 40(8), 1731 (2008)
https://doi.org/10.1007/s10714-007-0580-6
112 Z. Xiao and B. Q. Ma, Constraints on Lorentz invariance violation from gamma-ray burst GRB090510, Phys. Rev. D 80(11), 116005 (2009)
https://doi.org/10.1103/PhysRevD.80.116005
113 L. Shao, Z. Xiao, and B. Q. Ma, Lorentz violation from cosmological objects with very high energy photon emissions, Astropart. Phys. 33(5–6), 312 (2010)
https://doi.org/10.1016/j.astropartphys.2010.03.003
114 H. Xu and B. Q. Ma, Light speed variation from gammaray bursts, Astropart. Phys. 82, 72 (2016)
https://doi.org/10.1016/j.astropartphys.2016.05.008
115 H. Xu and B. Q. Ma, Light speed variation from gamma ray burst GRB 160509A, Phys. Lett. B 760, 602 (2016)
https://doi.org/10.1016/j.physletb.2016.07.044
116 H. Xu and B. Q. Ma, Regularity of high energy photon events from gamma ray bursts, J. Cosmol. Astropart. Phys. 01, 050 (2018)
https://doi.org/10.1088/1475-7516/2018/01/050
117 Y. Liu and B. Q. Ma, Light speed variation from gamma ray bursts: Criteria for low energy photons, Eur. Phys. J. C 78(10), 825 (2018)
https://doi.org/10.1140/epjc/s10052-018-6294-y
118 V. A. Acciari, S. Ansoldi, et al. [MAGIC Collaboration], Teraelectronvolt emission from the γ-ray burst GRB 190114C, Nature 575(7783), 455 (2019)
https://doi.org/10.1038/s41586-019-1750-x
119 M. Biesiada and A. Piorkowska, Lorentz invariance violation-induced time delays in GRBs in different cosmological models, Class. Quantum Gravity 26(12), 125007 (2009)
https://doi.org/10.1088/0264-9381/26/12/125007
120 Y. Pan, Y. Gong, S. Cao, H. Gao, and Z. H. Zhu, Constraints on the Lorentz invariance violation with gammaray bursts via a Markov chain Monte Carlo approach, Astrophys. J. 808(1), 78 (2015)
https://doi.org/10.1088/0004-637X/808/1/78
121 X. B. Zou, H. K. Deng, Z. Y. Yin, and H. Wei, Modelindependent constraints on Lorentz invariance violation via the cosmographic approach, Phys. Lett. B 776, 284 (2018)
https://doi.org/10.1016/j.physletb.2017.11.053
122 Y. Pan, J. Qi, S. Cao, T. Liu, Y. Liu, S. Geng, Y. Lian, and Z. H. Zhu, Model-independent constraints on Lorentz invariance violation: Implication from updated gammaray burst observations, Astrophys. J. 890(2), 169 (2020)
https://doi.org/10.3847/1538-4357/ab6ef5
123 T. N. Ukwatta, K. S. Dhuga, M. Stamatikos, C. D. Dermer, T. Sakamoto, E. Sonbas, W. C. Parke, L. C. Maximon, J. T. Linnemann, P. N. Bhat, A. Eskandarian, N. Gehrels, A. U. Abeysekara, K. Tollefson, and J. P. Norris, The lag-luminosity relation in the GRB source frame: An investigation with Swift BAT bursts, Mon. Not. R. Astron. Soc. 419(1), 614 (2012)
https://doi.org/10.1111/j.1365-2966.2011.19723.x
124 M. G. Bernardini, G. Ghirlanda, S. Campana, S. Covino, R. Salvaterra, J. L. Atteia, D. Burlon, G. Calderone, P. D’Avanzo, V. D’Elia, G. Ghisellini, V. Heussaff, D. Lazzati, A. Meland ri, L. Nava, S. D. Vergani, and G. Tagliaferri, Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity, Mon. Not. R. Astron. Soc. 446(2), 1129 (2015)
https://doi.org/10.1093/mnras/stu2153
125 Z. Chang, X. Li, H. N. Lin, Y. Sang, P. Wang, and S. Wang, Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts, Chin. Phys. C 40(4), 045102 (2016)
https://doi.org/10.1088/1674-1137/40/4/045102
126 L. Shao, B. B. Zhang, F. R. Wang, X. F. Wu, Y. H. Cheng, X. Zhang, B. Y. Yu, B. J. Xi, X. Wang, H. X. Feng, M. Zhang, and D. Xu, A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors, Astrophys. J. 844(2), 126 (2017)
https://doi.org/10.3847/1538-4357/aa7d01
127 R. J. Lu, Y. F. Liang, D. B. Lin, J. Lu, X. G. Wang, H. J. Lu, H. B. Liu, E. W. Liang, and B. Zhang, A comprehensive analysis of Fermi gamma-ray burst data (IV): Spectral lag and its relation to Ep evolution, Astrophys. J. 865(2), 153 (2018)
https://doi.org/10.3847/1538-4357/aada16
128 J. Albert, E. Aliu, et al. [MAGIC Collaboration], Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope, Phys. Lett. B 668(4), 253 (2008)
129 M. Martínez and M. Errando, A new approach to study energy-dependent arrival delays on photons from astrophysical sources, Astropart. Phys. 31(3), 226 (2009)
https://doi.org/10.1016/j.astropartphys.2009.01.005
130 H. Abdalla, F. Aharonian, F. A. Benkhali, E. O. Angüner, M. Arakawa, et al., The 2014 TeV γ-ray flare of MRK 501 seen with H.E.S.S.: Temporal and spectral constraints on lorentz invariance violation, Astrophys. J. 870(2), 93 (2019)
131 F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida, et al., Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304, Phys. Rev. Lett. 101(17), 170402 (2008)
132 A. Abramowski, F. Acero, et al. [H.E.S.S. Collaboration], Search for Lorentz invariance breaking with a likelihood fit of the PKS 2155–304 flare data taken on MJD 53944, Astropart. Phys. 34(9), 738 (2011)
133 N. Otte, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 7 (2011), International Cosmic Ray Conference, Vol. 7, p. 256
134 B. Zitzer, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 33 (2013), International Cosmic Ray Conference, Vol. 33, p. 2768
135 M. L. Ahnen, S. Ansoldi, et al. [MAGIC Collaboration], Constraining Lorentz invariance violation using the crab pulsar emission observed up to TeV energies by MAGIC, Astrophys. J. Suppl. 232(1), 9 (2017)
136 R. C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90(21), 211601 (2003)
https://doi.org/10.1103/PhysRevLett.90.211601
137 W. Coburn and S. E. Boggs, Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002, Nature 423, 415 (2003)
https://doi.org/10.1038/nature01612
138 R. E. Rutledge and D. B. Fox, Re-analysis of polarization in the γ-ray flux of GRB 021206, Mon. Not. R. Astron. Soc. 350(4), 1288 (2004)
https://doi.org/10.1111/j.1365-2966.2004.07665.x
139 C. Wigger, W. Hajdas, K. Arzner, M. Gudel, and A. Zehnder, Gamma‐ray burst polarization: Limits from RHESSI measurements, Astrophys. J. 613(2), 1088 (2004)
https://doi.org/10.1086/423163
140 L. Maccione, S. Liberati, A. Celotti, J. G. Kirk, and P. Ubertini, γ-ray polarization constraints on Planck scale violations of special relativity, Phys. Rev. D 78(10), 103003 (2008)
https://doi.org/10.1103/PhysRevD.78.103003
141 E. Kalemci, S. E. Boggs, C. Kouveliotou, M. Finger, and M. G. Baring, Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL, Astrophys. J. 75(Suppl. 169) (2007)
https://doi.org/10.1086/510676
142 S. McGlynn, D. J. Clark, A. J. Dean, L. Hanlon, S. McBreen, D. R. Willis, B. McBreen, A. J. Bird, and S. Foley, Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the spectrometer aboard INTEGRAL, Astron. Astrophys. 466(3), 895 (2007)
https://doi.org/10.1051/0004-6361:20066179
143 D. Götz, P. Laurent, F. Lebrun, F. Daigne, and Ž. Bošnjak, Variable polarization measured in the prompt emission of GRB 041219a using IBIS on board integral, Astrophys. J. 695(2), L208 (2009)
https://doi.org/10.1088/0004-637X/695/2/L208
144 D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, T. Sakashita, Y. Morihara, T. Takahashi, N. Toukairin, H. Fujimoto, Y. Kodama, and S. Kubo, Detection of gamma-ray polarization in prompt emission of GRB 100826a, Astrophys. J. 743(2), L30 (2011)
https://doi.org/10.1088/2041-8205/743/2/L30
145 D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, Y. Morihara, T. Takahashi, Y. Wakashima, H. Yonemochi, T. Sakashita, N. Toukairin, H. Fujimoto, and Y. Kodama, Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization, Astrophys. J. 758(1), L1 (2012)
https://doi.org/10.1088/2041-8205/758/1/L1
146 H. K. Vedantham, V. Ravi, K. Mooley, D. Frail, G. Hallinan, and S. R. Kulkarni, On associating fast radio bursts with afterglows, Astrophys. J. 824(1), L9 (2016)
https://doi.org/10.3847/2041-8205/824/1/L9
147 P. K. G. Williams and E. Berger, No precise localization for FRB 150418: Claimed radio transient is AGN variability, Astrophys. J. 821(2), L22 (2016)
https://doi.org/10.3847/2041-8205/821/2/L22
148 S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke-Spolaor, J. W. T. Hessels, et al., A direct localization of a fast radio burst and its host, Nature 541(7635), 58 (2017)
https://doi.org/10.1038/nature20797
149 J. W. T. Hessels, L. G. Spitler, A. D. Seymour, J. M. Cordes, D. Michilli, et al., FRB 121102 bursts show complex time–frequency structure, Astrophys. J. 876(2), L23 (2019)
https://doi.org/10.3847/2041-8213/ab13ae
150 M. J. Bentum, L. Bonetti, and A. D. A. M. Spallicci, Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies, Adv. Space Res. 59(2), 736 (2017)
https://doi.org/10.1016/j.asr.2016.10.018
151 W. Deng and B. Zhang, Cosmological implications of fast radio burst/gamma-ray burst associations, Astrophys. J. 783(2), L35 (2014)
https://doi.org/10.1088/2041-8205/783/2/L35
152 L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, et al., A repeating fast radio burst, Nature 531(7593), 202 (2016)
https://doi.org/10.1038/nature17168
153 S. P. Tendulkar, C. G. Bassa, J. M. Cordes, G. C. Bower, C. J. Law, S. Chatterjee, E. A. K. Adams, S. Bogdanov, S. Burke-Spolaor, B. J. Butler, P. Demorest, J. W. T. Hessels, V. M. Kaspi, T. J. W. Lazio, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, H. J. van Langevelde, and R. S. Wharton, The host galaxy and redshift of the repeating fast radio burst FRB 121102, Astrophys. J. 834(2), L7 (2017)
https://doi.org/10.3847/2041-8213/834/2/L7
154 B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, et al., A repeating fast radio burst source localized to a nearby spiral galaxy, Nature 577(7789), 190 (2020)
https://doi.org/10.1038/s41586-019-1866-z
155 K. W. Bannister, A. T. Deller, C. Phillips, et al., A single fast radio burst localized to a massive galaxy at cosmological distance, Science 365(6453), 565 (2019)
https://doi.org/10.1126/science.365.6453.554-h
156 J. X. Prochaska, J. P. Macquart, M. McQuinn, S. Simha, R. M. Shannon, C. K. Day, L. Marnoch, S. Ryder, A. Deller, K. W. Bannister, S. Bhandari, R. Bordoloi, J. Bunton, H. Cho, C. Flynn, E. K. Mahony, C. Phillips, H. Qiu, and N. Tejos, The low density and magnetization of a massive galaxy halo exposed by a fast radio burst, Science 366(6462), 231 (2019)
https://doi.org/10.1126/science.aay0073
157 V. Ravi, M. Catha, L. D’Addario, S. G. Djorgovski, G. Hallinan, R. Hobbs, J. Kocz, S. R. Kulkarni, J. Shi, H. K. Vedantham, S. Weinreb, and D. P. Woody, A fast radio burst localized to a massive galaxy, Nature 572(7769), 352 (2019)
https://doi.org/10.1038/s41586-019-1389-7
158 J. P. Macquart, J. X. Prochaska, M. McQuinn, K. W. Bannister, S. Bhandari, C. K. Day, A. T. Deller, R. D. Ekers, C. W. James, L. Marnoch, S. Osłowski, C. Phillips, S. D. Ryder, D. R. Scott, R. M. Shannon, and N. Tejos, A census of baryons in the Universe from localized fast radio bursts, Nature 581(7809), 391 (2020)
https://doi.org/10.1038/s41586-020-2300-2
159 J. X. Prochaska and Y. Zheng, Probing galactic haloes with fast radio bursts, Mon. Not. R. Astron. Soc. 485(1), 648 (2019)
https://doi.org/10.1093/mnras/stz261
160 J. Xu and J. L. Han, Extragalactic dispersion measures of fast radio bursts, Res. Astron. Astrophys. 15(10), 1629 (2015)
https://doi.org/10.1088/1674-4527/15/10/002
161 R. Luo, K. Lee, D. R. Lorimer, and B. Zhang, On the normalized FRB luminosity function, Mon. Not. R. Astron. Soc. 481(2), 2320 (2018)
https://doi.org/10.1093/mnras/sty2364
162 A. M. Hopkins and J. F. Beacom, On the normalization of the cosmic star formation history, Astrophys. J. 651(1), 142 (2006)
https://doi.org/10.1086/506610
163 L. X. Li, Star formation history up to z= 7.4: implications for gamma-ray bursts and cosmic metallicity evolution, Mon. Not. R. Astron. Soc. 388(4), 1487 (2008)
https://doi.org/10.1111/j.1365-2966.2008.13488.x
164 N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, et al, Planck 2018 results, Astron. Astrophys. 641, A6 (2020)
https://doi.org/10.1051/0004-6361/202039265
165 M. Fukugita, C. J. Hogan, and P. J. E. Peebles, The cosmic baryon budget, Astrophys. J. 503(2), 518 (1998)
https://doi.org/10.1086/306025
166 R. B. Tully, H. Courtois, Y. Hoffman, and D. Pomarede, The Laniakea supercluster of galaxies, Nature 513(7516), 71 (2014)
https://doi.org/10.1038/nature13674
167 O. Minazzoli, N. K. Johnson-McDaniel, and M. Sakellariadou, Shortcomings of Shapiro delay-based tests of the equivalence principle on cosmological scales, Phys. Rev. D 100(10), 104047 (2019)
https://doi.org/10.1103/PhysRevD.100.104047
168 Z. Y. Wang, R. Y. Liu, and X. Y. Wang, Testing the equivalence principle and lorentz invariance with PeV neutrinos from blazar flares, Phys. Rev. Lett. 116(15), 151101 (2016)
https://doi.org/10.1103/PhysRevLett.116.151101
169 S. Boran, S. Desai, and E. O. Kahya, Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A, Eur. Phys. J. C 79(3), 185 (2019)
https://doi.org/10.1140/epjc/s10052-019-6695-6
170 R. Laha, Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+ 056, Phys. Rev. D 100(10), 103002 (2019)
https://doi.org/10.1103/PhysRevD.100.103002
171 J. J. Wei, B. B. Zhang, L. Shao, H. Gao, Y. Li, Q. Q. Yin, X. F. Wu, X. Y. Wang, B. Zhang, and Z. G. Dai, Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar, J. High Energy Astrophys. 22, 1 (2019)
https://doi.org/10.1016/j.jheap.2019.01.002
172 J. J. Wei, X. F. Wu, H. Gao, and P. Meszaros, Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gammaray bursts, J. Cosmol. Astropart. Phys. 08, 031 (2016)
https://doi.org/10.1088/1475-7516/2016/08/031
173 X. Li, Y. M. Hu, Y. Z. Fan, and D. M. Wei, GRB/GW association: Long–short GRB candidates, time lag, measuring gravitational wave velocity, and testing einstein’s equivalence principle, Astrophys. J. 827(1), 75 (2016)
https://doi.org/10.3847/0004-637X/827/1/75
174 B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)
175 M. Liu, Z. Zhao, X. You, J. Lu, and L. Xu, Test of the weak equivalence principle using LIGO observations of GW150914 and Fermi observations of GBM transient 150914, Phys. Lett. B 770, 8 (2017)
https://doi.org/10.1016/j.physletb.2017.04.033
176 H. Wang, F. W. Zhang, Y. Z. Wang, Z. Q. Shen, Y. F. Liang, X. Li, N. H. Liao, Z. P. Jin, Q. Yuan, Y. C. Zou, Y. Z. Fan, and D. M. Wei, The GW170817/GRB 170817A/AT 2017GFO Association: Some Implications for Physics and Astrophysics, Astrophys. J. 851(1), L18 (2017)
https://doi.org/10.3847/2041-8213/aa9e08
177 J. J. Wei, B. B. Zhang, X. F. Wu, H. Gao, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 11, 035 (2017)
https://doi.org/10.1088/1475-7516/2017/11/035
178 I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)
https://doi.org/10.1103/PhysRevD.97.083013
179 S. Boran, S. Desai, E. O. Kahya, and R. P. Woodard, GW170817 falsifies dark matter emulators, Phys. Rev. D 97(4), 041501 (2018)
https://doi.org/10.1103/PhysRevD.97.041501
180 L. Yao, Z. Zhao, Y. Han, J. Wang, T. Liu, and M. Liu, Testing the weak equivalence principle with the binary neutron star merger GW 170817: The gravitational contribution of the host galaxy, Astrophys. J. 900(1), 31 (2020)
https://doi.org/10.3847/1538-4357/abab02
181 C. Sivaram, Constraints on the photon mass and charge and test of equivalence principle from GRB 990123, Bull. Astron. Soc. India 27, 627 (1999)
182 Y. Sang, H. N. Lin, and Z. Chang, Testing Einstein’s equivalence principle with short gamma-ray bursts, Mon. Not. R. Astron. Soc. 460, 2282 (2016)
https://doi.org/10.1093/mnras/stw1136
183 Z. X. Luo, B. Zhang, J. J. Wei, and X. F. Wu, Testing Einstein’s Equivalence Principle with supercluster Laniakea’s gravitational field, J. High Energy Astrophysics. 9, 35 (2016)
https://doi.org/10.1016/j.jheap.2016.04.001
184 H. Yu, S. Q. Xi, and F. Y. Wang, A new method to test the Einstein’s weak equivalence principle, Astrophys. J. 860(2), 173 (2018)
https://doi.org/10.3847/1538-4357/aac2e3
185 S. J. Tingay and D. L. Kaplan, Limits on Einstein’s equivalence principle from the first localized fast radio burst FRB 150418, Astrophys. J. 820(2), L31 (2016)
https://doi.org/10.3847/2041-8205/820/2/L31
186 A. Nusser, On testing the equivalence principle with extragalactic bursts, Astrophys. J. 821(1), L2 (2016)
https://doi.org/10.3847/2041-8205/821/1/L2
187 D. Wang, Z. Li, and J. Zhang, Weak equivalence principle, swampland and H 0 tension with fast single radio bursts FRB 180924 and FRB 190523, Physics of the Dark Universe 29, 100571 (2020)
https://doi.org/10.1016/j.dark.2020.100571
188 J. J. Wei, J. S. Wang, H. Gao, and X. F. Wu, Tests of the Einstein equivalence principle using TeV blazars, Astrophys. J. 818(1), L2 (2016)
https://doi.org/10.3847/2041-8205/818/1/L2
189 Y. P. Yang and B. Zhang, Testing Einstein’s weak equivalence principle with a 0.4-nanosecond giant pulse of the Crab pulsar, Phys. Rev. D 94(10), 101501 (2016)
https://doi.org/10.1103/PhysRevD.94.101501
190 Y. Zhang and B. Gong, Test of weak equivalence principle with the multi-band timing of the Crab pulsar, Astrophys. J. 837(2), 134 (2017)
https://doi.org/10.3847/1538-4357/aa61fb
191 S. Desai and E. Kahya, Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation, Eur. Phys. J. C 78(2), 86 (2018)
https://doi.org/10.1140/epjc/s10052-018-5571-0
192 C. Leung, B. Hu, S. Harris, A. Brown, J. Gallicchio, and H. Nguyen, Testing the weak equivalence principle using optical and near-infrared Crab pulses, Astrophys. J. 861(1), 66 (2018)
https://doi.org/10.3847/1538-4357/aac954
193 E. O. Kahya and S. Desai, Constraints on frequencydependent violations of Shapiro delay from GW150914, Phys. Lett. B 756, 265 (2016)
https://doi.org/10.1016/j.physletb.2016.03.033
194 S. C. Yang, W. B. Han, and G. Wang, Tests of weak equivalence principle with the gravitational wave signals in the LIGO-Virgo catalogue GWTC-1, Mon. Not. R. Astron. Soc. 499(1), L53 (2020)
https://doi.org/10.1093/mnrasl/slaa143
195 H. Yu and F. Y. Wang, Testing weak equivalence principle with strongly lensed cosmic transients, Eur. Phys. J. C 78(9), 692 (2018)
https://doi.org/10.1140/epjc/s10052-018-6162-9
196 O. Minazzoli, Strong lensing in multimessenger astronomy as a test of the equivalence principle, arXiv: 1912.06891 (2019)
197 X. F. Wu, J. J. Wei, M. X. Lan, H. Gao, Z. G. Dai, and P. Meszaros, New test of weak equivalence principle using polarized light from astrophysical events, Phys. Rev. D 95(10), 103004 (2017)
https://doi.org/10.1103/PhysRevD.95.103004
198 J. J. Wei and X. F. Wu, Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows, Eur. Phys. J. Plus 135(6), 527 (2020)
https://doi.org/10.1140/epjp/s13360-020-00554-x
199 S. X. Yi, Y. C. Zou, X. Yang, B. Liao, and S. W. Wei, Constraining the Einstein equivalence principle with multi-wavelength observations of polarized blazars, Mon. Not. R. Astron. Soc. 493(2), 1782 (2020)
https://doi.org/10.1093/mnras/staa369
200 S. X. Yi, Y. C. Zou, J. J. Wei, and Q. Q. Zhou, Constraining Einstein’s equivalence principle with multiwavelength polarized astrophysical sources, Mon. Not. R. Astron. Soc. 498(3), 4295 (2020)
https://doi.org/10.1093/mnras/staa2686
201 H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E. O. Angüner, et al, A very-high-energy component deep in the γ-ray burst afterglow, Nature 575(7783), 464 (2019)
202 B. Zhang, Extreme emission seen from γ-ray bursts, Nature 575(7783), 448 (2019)
https://doi.org/10.1038/d41586-019-03503-6
203 M. L. McConnell, High energy polarimetry of prompt GRB emission, New Astron. Rev. 76, 1 (2017)
https://doi.org/10.1016/j.newar.2016.11.001
204 S. Gao and R. M. Wald, Theorems on gravitational time delay and related issues, Class. Quantum Grav. 17(24), 4999 (2000)
https://doi.org/10.1088/0264-9381/17/24/305
205 Y. Hoffman, D. Pomarede, R. B. Tully, and H. M. Courtois, The dipole repeller, Nat. Astron. 1, 0036 (2017)
https://doi.org/10.1038/s41550-016-0036
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed