Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 41501   https://doi.org/10.1007/s11467-021-1059-8
  本期目录
Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states
Mei-Yu Wang1,3, Fengli Yan1,3(), Ting Gao2()
1. College of Physics, Hebei Normal University, Shijiazhuang 050024, China
2. School of Mathematics Science, Hebei Normal University, Shijiazhuang 050024, China
3. Hebei Key Laboratory of Photophysics Research and Application, Shijiazhuang 050024, China
 全文: PDF(879 KB)  
Abstract

Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.

Key wordsremote state preparation    hyper-entanglement
收稿日期: 2020-10-21      出版日期: 2021-04-15
Corresponding Author(s): Fengli Yan,Ting Gao   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 41501.
Mei-Yu Wang, Fengli Yan, Ting Gao. Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states. Front. Phys. , 2021, 16(4): 41501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1059-8
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/41501
1 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
2 C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
3 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
4 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
5 G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
6 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
7 H. K. Lo, Classical-communication cost in distributed quantum-information processing: A generalization of quantumcommunication complexity, Phys. Rev. A 62(1), 012313 (2000)
https://doi.org/10.1103/PhysRevA.62.012313
8 A. K. Pati, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A 63(1), 014302 (2000)
https://doi.org/10.1103/PhysRevA.63.014302
9 C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, Remote state preparation, Phys. Rev. Lett. 87(7), 077902 (2001)
https://doi.org/10.1103/PhysRevLett.87.077902
10 L. Qi, G. L. Wang, S. T. Liu, S. Zhang, and H. F. Wang, Dissipation-induced topological phase transition and periodicdriving-induced photonic topological state transfer in a small optomechanical lattice, Front. Phys. 16(1), 12503 (2021)
https://doi.org/10.1007/s11467-020-0983-3
11 I. Devetak and T. Berger, Low-entanglement remote state preparation, Phys. Rev. Lett. 87(19), 197901 (2001)
https://doi.org/10.1103/PhysRevLett.87.197901
12 B. Zeng and P. Zhang, Remote-state preparation in higher dimension and the parallelizable manifold Sn 1, Phys. Rev. A 65(2), 022316 (2002)
https://doi.org/10.1103/PhysRevA.65.022316
13 D. W. Berry and B. C. Sanders, Optimal remote state preparation, Phys. Rev. Lett. 90(5), 057901 (2003)
https://doi.org/10.1103/PhysRevLett.90.057901
14 D. W. Leung and P. W. Shor, Oblivious remote state preparation, Phys. Rev. Lett. 90(12), 127905 (2003)
https://doi.org/10.1103/PhysRevLett.90.127905
15 Y. X. Huang and M. S. Zhan, Remote preparation of multipartite pure state, Phys. Lett. A 327(5–6), 404 (2004)
https://doi.org/10.1016/j.physleta.2004.05.044
16 Z. Kurucz, P. Adam, Z. Kis, and J. Janszky, Continuous variable remote state preparation, Phys. Rev. A 72(5), 052315 (2005)
https://doi.org/10.1103/PhysRevA.72.052315
17 Z. Kurucz, P. Adam, and J. Janszky, General criterion for oblivious remote state preparation, Phys. Rev. A 73(6), 062301 (2006)
https://doi.org/10.1103/PhysRevA.73.062301
18 B. A. Nguyen and J. Kim, Joint remote state preparation, J. Phys. B 41(9), 095501 (2008)
https://doi.org/10.1088/0953-4075/41/9/095501
19 N. B. An, C. T. Bich, and N. V. Don, Deterministic joint remote state preparation, Phys. Lett. A 375(41), 3570 (2011)
https://doi.org/10.1016/j.physleta.2011.08.045
20 D. Zhang, X. W. Zha, Y. J. Duan, and Y. Q. Yang, Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state, Quantum Inform. Process. 15(5), 2169 (2016)
https://doi.org/10.1007/s11128-016-1265-4
21 X. B. Chen, Y. R. Sun, G. Xu, H. Y. Jia, Z. Qu, and Y.X. Yang, Controlled bidirectional remote preparation of three-qubit state, Quantum Inform. Process. 16(10), 244 (2017)
https://doi.org/10.1007/s11128-017-1690-z
22 C. Y. Zhang, M. Q. Bai, and S. Q. Zhou, Cyclic joint remote state preparation in noisy environment, Quantum Inform. Process. 17(6), 146 (2018)
https://doi.org/10.1007/s11128-018-1917-7
23 Y. J. Qian, S. B. Xue, and M. Jiang, Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment, Phys. Lett. A 384(10), 126204 (2020)
https://doi.org/10.1016/j.physleta.2019.126204
24 T. Dash, R. Sk, and P. K. Panigrahi, Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel, Opt. Commun. 464, 125518 (2020)
https://doi.org/10.1016/j.optcom.2020.125518
25 J. Laurat, T. Coudreau, N. Treps, A. Ma ıtre, and C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: Generation of a subpoissonian state from twin beams, Phys. Rev. Lett. 91(21), 213601 (2003)
https://doi.org/10.1103/PhysRevLett.91.213601
26 S. A. Babichev, B. Brezger, and A. I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise, Phys. Rev. Lett. 92(4), 047903 (2004)
https://doi.org/10.1103/PhysRevLett.92.047903
27 G. Y. Xiang, J. Li, B. Yu, and G. C. Guo, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A 72(1), 012315 (2005)
https://doi.org/10.1103/PhysRevA.72.012315
28 N. A. Peters, J. T. Barreiro, M. E. Goggin, T. C. Wei, and P. G. Kwiat, Remote state preparation: Arbitrary remote control of photon polarization, Phys. Rev. Lett. 94(15), 150502 (2005)
https://doi.org/10.1103/PhysRevLett.94.150502
29 W. T. Liu, W. Wu, B. Q. Ou, P. X. Chen, C. Z. Li, and J. M. Yuan, Experimental remote preparation of arbitrary photon polarization states, Phys. Rev. A 76(2), 022308 (2007)
https://doi.org/10.1103/PhysRevA.76.022308
30 H. Mikami and T. Kobayashi, Remote preparation of qutrit states with biphotons, Phys. Rev. A 75(2), 022325 (2007)
https://doi.org/10.1103/PhysRevA.75.022325
31 W. Wu, W. T. Liu, P. X. Chen, and C. Z. Li, Deterministic remote preparation of pure and mixed polarization states, Phys. Rev. A 81(4), 042301 (2010)
https://doi.org/10.1103/PhysRevA.81.042301
32 N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states, Phys. Rev. A 81(1), 012334 (2010)
https://doi.org/10.1103/PhysRevA.81.012334
33 M. A. Solís-Prosser and L. Neves, Remote state preparation of spatial qubits, Phys. Rev. A 84(1), 012330 (2011)
https://doi.org/10.1103/PhysRevA.84.012330
34 M. Rådmark, M. Wiesniak, M. Zukowski, and M. Bourennane, Experimental multilocation remote state preparation, Phys. Rev. A 88(3), 032304 (2013)
https://doi.org/10.1103/PhysRevA.88.032304
35 Y. S. Ra, H. T. Lim, and Y. H. Kim, Remote preparation of three-photon entangled states via single-photon measurement, Phys. Rev. A 94(4), 042329 (2016)
https://doi.org/10.1103/PhysRevA.94.042329
36 M. C. Dheur, B. Vest, E. Devaux, A. Baron, J. P. Hugonin, J. J. Greffet, G. Messin, and F. Marquier, Remote preparation of single-plasmon states, Phys. Rev. B 96(4), 045432 (2017)
https://doi.org/10.1103/PhysRevB.96.045432
37 H. Le Jeannic, A. Cavaillès, J. Raskop, K. Huang, and J. Laurat, Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light, Optica 5(8), 1012 (2018)
https://doi.org/10.1364/OPTICA.5.001012
38 P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
https://doi.org/10.1103/PhysRevA.58.R2623
39 S. P. Walborn, S. Pádua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
https://doi.org/10.1103/PhysRevA.68.042313
40 C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
41 M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
https://doi.org/10.1103/PhysRevA.75.042317
42 Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
43 X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
https://doi.org/10.1103/PhysRevA.93.022302
44 G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
https://doi.org/10.1364/OE.27.008994
45 T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantumdot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
https://doi.org/10.1103/PhysRevA.85.062311
46 B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
47 X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
https://doi.org/10.1364/OE.24.018388
48 H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys. 13(5), 130315 (2018)
https://doi.org/10.1007/s11467-018-0801-3
49 J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)
https://doi.org/10.1007/s11467-018-0866-z
50 C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett. 89(25), 257901 (2002)
https://doi.org/10.1103/PhysRevLett.89.257901
51 A. Yabushita and T. Kobayashi, Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69(1), 013806 (2004)
https://doi.org/10.1103/PhysRevA.69.013806
52 J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
53 M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
https://doi.org/10.1103/PhysRevA.72.052110
54 A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, Mulipath entanglement of two photons, Phys. Rev. Lett. 102(15), 153902 (2009)
https://doi.org/10.1103/PhysRevLett.102.153902
55 G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
56 W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Guhne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state, Nat. Phys. 6(5), 331 (2010)
https://doi.org/10.1038/nphys1603
57 D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
https://doi.org/10.1103/PhysRevA.91.062303
58 M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević, Hyperentanglement of photons emitted by a quantum dot, Phys. Rev. Lett. 121(11), 110503 (2018)
https://doi.org/10.1103/PhysRevLett.121.110503
59 X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
60 J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4(4), 282 (2008)
https://doi.org/10.1038/nphys919
61 J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Remote preparation of single-photon hybrid entangled and vectorpolarization states, Phys. Rev. Lett. 105(3), 030407 (2010)
https://doi.org/10.1103/PhysRevLett.105.030407
62 P. Zhou, X. F. Jiao, and S. X. Lv, Parallel remote state preparation of arbitrary single-qubit states via linear optical elements by using hyperentangled Bell states as the quantum channel, Quantum Inform. Process. 17(11), 298 (2018)
https://doi.org/10.1007/s11128-018-2067-7
63 X. F. Jiao, P. Zhou, S. X. Lv, and Z. Y. Wang, Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear optical elements, Sci. Rep. 9(1), 4663 (2019)
https://doi.org/10.1038/s41598-018-37159-5
64 A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength, New J. Phys. 12(10), 103005 (2010)
https://doi.org/10.1088/1367-2630/12/10/103005
65 C. Chen, E. Y. Zhu, A. Riazi, A. V. Gladyshev, C. Corbari, M. Ibsen, P. G. Kazansky, and L. Qian, Compensation-free broadband entangled photon pair sources, Opt. Express 25(19), 22667 (2017)
https://doi.org/10.1364/OE.25.022667
66 M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
https://doi.org/10.1103/PhysRevLett.73.58
67 R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, Experimental investigation of the robustness of partially entangled qubits over 11 km, Phys. Rev. A 66(6), 062304 (2002)
https://doi.org/10.1103/PhysRevA.66.062304
68 I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber, Phys. Rev. Lett. 93(18), 180502 (2004)
https://doi.org/10.1103/PhysRevLett.93.180502
69 T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, Entanglement distribution over 300 km of fiber, Opt. Express 21(20), 23241 (2013)
https://doi.org/10.1364/OE.21.023241
70 R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, Quantum teleportation across a metropolitan fibre network, Nat. Photon. 10(10), 676 (2016)
https://doi.org/10.1038/nphoton.2016.180
71 Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Quantum teleportation with independent sources and prior entanglement distribution over a network, Nat. Photon. 10(10), 671 (2016)
https://doi.org/10.1038/nphoton.2016.179
72 J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
https://doi.org/10.1103/PhysRevLett.82.2594
73 C. Simon and J. P. Poizat, Creating single time-binentangled photon pairs, Phys. Rev. Lett. 94(3), 030502 (2005)
https://doi.org/10.1103/PhysRevLett.94.030502
74 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett. 95(6), 060501 (2005)
https://doi.org/10.1103/PhysRevLett.95.060501
75 A. Zavatta, M. D′ Angelo, V. Parigi, and M. Bellini, Remote preparation of arbitrary time-encoded single-photon ebits, Phys. Rev. Lett. 96(2), 020502 (2006)
https://doi.org/10.1103/PhysRevLett.96.020502
76 J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
77 D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
https://doi.org/10.1016/j.physleta.2005.06.034
78 M. Jiang and D. Dong, A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states, J. Phys. B 45(20), 205506 (2012)
https://doi.org/10.1088/0953-4075/45/20/205506
79 F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
https://doi.org/10.1016/j.scib.2016.11.007
80 X. J. Zhang, D. S. Wu, J. Zhang, H. W. Yu, J. G. Zheng, D. X. Cao, and M. Z. Li, One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application, Opt. Express 17(19), 17164 (2009)
https://doi.org/10.1364/OE.17.017164
81 E. H. Huntington and T. C. Ralph, Separating the quantum sidebands of an optical field, J. Opt. B 4(2), 123 (2002)
https://doi.org/10.1088/1464-4266/4/2/307
82 J. Zhang, Einstein–Podolsky–Rosen sideband entanglement in broadband squeezed light, Phys. Rev. A 67(5), 054302 (2003)
https://doi.org/10.1103/PhysRevA.67.054302
83 E. H. Huntington and T. C. Ralph, Components for optical qubits encoded in sideband modes, Phys. Rev. A 69(4), 042318 (2004)
https://doi.org/10.1103/PhysRevA.69.042318
84 E. H. Huntington, G. N. Milford, C. Robilliard, and T. C. Ralph, Coherent analysis of quantum optical sideband modes, Opt. Lett. 30(18), 2481 (2005)
https://doi.org/10.1364/OL.30.002481
85 M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, Frequency-coded quantum key distribution, Opt. Lett. 32(3), 301 (2007)
https://doi.org/10.1364/OL.32.000301
86 T. Zhang, Z. Q. Yin, Z. F. Han, and G. C. Guo, A frequency-coded quantum key distribution scheme, Opt. Commun. 281(18), 4800 (2008)
https://doi.org/10.1016/j.optcom.2008.06.009
87 H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, Differential phase shift quantum key distribution experiment over 105 km fibre, New J. Phys. 7, 232 (2005)
https://doi.org/10.1088/1367-2630/7/1/232
88 H. Takesue, Erasing distinguishability using quantum frequency up-conversion, Phys. Rev. Lett. 101(17), 173901 (2008)
https://doi.org/10.1103/PhysRevLett.101.173901
89 R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nat. Commun. 2(1), 537 (2011)
https://doi.org/10.1038/ncomms1544
90 Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, Orbital angular momentum-entanglement frequency transducer, Phys. Rev. Lett. 117(10), 103601 (2016)
https://doi.org/10.1103/PhysRevLett.117.103601
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed