Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 43504   https://doi.org/10.1007/s11467-021-1060-2
  本期目录
Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity
Sa Yang(), Ren-Long Zhou(), Yang-Jun Huang
School of Physics and Information Engineering, Guangdong University of Education, Guangzhou 510303, China
 全文: PDF(2004 KB)  
Abstract

In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.

Key wordsgraphene nanoribbon    surface plasmon resonance    confinement
收稿日期: 2020-10-27      出版日期: 2021-04-15
Corresponding Author(s): Sa Yang,Ren-Long Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 43504.
Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity. Front. Phys. , 2021, 16(4): 43504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1060-2
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/43504
1 X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Chipintegrated ultrafast graphene photodetector with high responsivity, Nat. Photon. 7(11), 883 (2013)
https://doi.org/10.1038/nphoton.2013.253
2 J. Liang, W. Hu, Z. Ye, L. Liao, Z. Li, X. Chen, and W. Lu, Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure, J. Appl. Phys. 115(18), 184504 (2014)
https://doi.org/10.1063/1.4876227
3 Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, Broadbandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide, Opt. Express 17(16), 13727 (2009)
https://doi.org/10.1364/OE.17.013727
4 J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few-layer MoS2 phototransistors with au nanostructure arrays, Small 11(20), 2392 (2015)
https://doi.org/10.1002/smll.201403422
5 H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, Tunable mid-infrared plasmonic band-pass filter based on a single graphene ribbon with cavities, J. Appl. Phys. 116(22), 224505 (2014)
https://doi.org/10.1063/1.4903965
6 Z. Shi, L. Gan, T. Xiao, H. Guo, and Z. Li, All-optical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)
https://doi.org/10.1021/acsphotonics.5b00469
7 Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface adsorbed layers, Nano Lett. 14(3), 1573 (2014)
https://doi.org/10.1021/nl404824w
8 X. Huang, L. Liu, S. Zhou, and J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)
https://doi.org/10.1007/s11467-019-0937-9
9 K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
10 Y. Fan, Z. Wei, Z. Zhang, and H. Li, Enhancing infrared extinction and absorption in a monolayer graphene ribbon by harvesting the electric dipolar mode of split ring resonators, Opt. Lett. 38(24), 5410 (2013)
https://doi.org/10.1364/OL.38.005410
11 X. Hu and J. Wang, High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene, Opt. Lett. 40(23), 5538 (2015)
https://doi.org/10.1364/OL.40.005538
12 S. Yang, R. Zhou, D. Liu, Q. Lin, and S. Li, Lifetime of enhanced graphene surface plasmon and superstrate sensitivity, Plasmonics 15(4), 1103 (2020)
https://doi.org/10.1007/s11468-019-01023-7
13 Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
https://doi.org/10.1021/nn3055835
14 P. Liu, W. Cai, L. L. Wang, X. Zhang, and J. Xu, Tunable terahertz optical antennas based on graphene ring structures, Appl. Phys. Lett. 100(15), 153111 (2012)
https://doi.org/10.1063/1.3702819
15 V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, Oblique terahertz plasmons in graphene nanoribbon arrays, Phys. Rev. B 81(7), 073404 (2010)
https://doi.org/10.1103/PhysRevB.81.073404
16 R. Zhou, S. Yang, D. Liu, and G. Cao, Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays, Opt. Express 25(25), 31478 (2017)
https://doi.org/10.1364/OE.25.031478
17 B. Wang, X. Zhang, F. J. Garcíavidal, X. Yuan, and J. Teng, Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays, Phys. Rev. Lett. 109(7), 073901 (2012)
https://doi.org/10.1103/PhysRevLett.109.073901
18 X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, Strong enhancement of lightmatter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett. 12(11), 5626 (2012)
https://doi.org/10.1021/nl302746n
19 J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, Absorption enhancement and total absorption in a graphene-waveguide hybrid structure, AIP Adv. 7(2), 025101 (2017)
https://doi.org/10.1063/1.4975706
20 T. Xiao, L. Gan, and Z. Li, Graphene surface plasmon polaritons transport on curved substrates, Photon. Res. 3(6), 300 (2015)
https://doi.org/10.1364/PRJ.3.000300
21 W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)
https://doi.org/10.1021/nn301888e
22 H. Lu, X. Liu, D. Mao, and G. Wang, Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators, Opt. Lett. 37(18), 3780 (2012)
https://doi.org/10.1364/OL.37.003780
23 B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photodetection in vertical Au-graphene hybrid nanostructure, Laser Photon. Rev. 11(1), 1600148 (2017)
https://doi.org/10.1002/lpor.201600148
24 K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge, W. Huang, Z. Lin, Z. Guo, Y. Zhang, and H. Zhang, In situ preparation of CsPbBr3/black phosphorus heterostructure with optimized interface and photodetector application, Nanoscale 11(36), 16852 (2019)
https://doi.org/10.1039/C9NR06488E
25 B. Wang, S. Zhong, Z. Zhang, Z. Zheng, Y. Zhang, and H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors, Appl. Mater. Today 15, 115 (2019)
https://doi.org/10.1016/j.apmt.2018.12.010
26 H. Shan, Y. Yu, R. Zhang, R. Cheng, D. Zhang, Y. Luo, X. Wang, B. Li, S. Zu, F. Lin, Z. Liu, K. Chang, and Z. Fang, Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixeddimensional van der Waals heterostructures, Mater. Today 24, 10 (2019)
https://doi.org/10.1016/j.mattod.2019.01.015
27 W. Huang, X. Jiang, Y. Wang, F. Zhang, Y. Ge, Y. Zhang, L. Wu, D. Ma, Z. Li, R. Wang, Z. Huang, X. Dai, Y. Xiang, J. Li, and H. Zhang, Two-dimensional beta-lead oxide quantum dots, Nanoscale 10(44), 20540 (2018)
https://doi.org/10.1039/C8NR07788F
28 Y. Ge, W. Huang, F. Yang, J. Liu, C. Wang, Y. Wang, J. Guo, F. Zhang, Y. Song, S. Xu, D. Fan, and H. Zhang, Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics, Nanoscale 11(14), 6828 (2019)
https://doi.org/10.1039/C9NR01112A
29 C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber, Appl. Phys. Rev. 6(4), 041304 (2019)
https://doi.org/10.1063/1.5099188
30 G. Zhang, X. Tang, X. Fu, W. Chen, B. Shabbir, H. Zhang, Q. Liu, and M. Gong, 2D group-VA fluorinated antimonene: Synthesis and saturable absorption, Nanoscale 11(4), 1762 (2019)
https://doi.org/10.1039/C8NR07894G
31 M. Luo, T. Fan, Y. Zhou, H. Zhang, and L. Mei, 2D black phosphorus-based biomedical applications, Adv. Funct. Mater. 29(13), 1808306 (2019)
https://doi.org/10.1002/adfm.201808306
32 M. Qiu, W. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. Liu, H. Zhang, and J. S. Kim, Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications, Chem. Soc. Rev. 47(15), 5588 (2018)
https://doi.org/10.1039/C8CS00342D
33 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
34 W. Zhang, H. Liu, J. Lu, L. Ni, H. Liu, Q. Li, M. Qiu, B. Xu, T. Lee, Z. Zhao, X. Wang, M. Wang, T. Wang, A. Offenhäusser, D. Mayer, W. T. Hwang, and D. Xiang, Atomic switches of metallic point contacts by plasmonic heating, Light Sci. Appl. 8(1), 34 (2019)
https://doi.org/10.1038/s41377-019-0144-z
35 P. Ghosh, J. Lu, Z. Chen, H. Yang, M. Qiu, and Q. Li, Photothermal-induced nanowelding of metalsemiconductor heterojunction in integrated nanowire units, Adv. Electron. Mater. 4(5), 1700614 (2018)
https://doi.org/10.1002/aelm.201700614
36 D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, and H. Xie, Recent progress of two dimensional thermoelectric materials, Nano-Micro Lett. 12(1), 36 (2020)
https://doi.org/10.1007/s40820-020-0374-x
37 D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector, Appl. Mater. Interfaces 11(4), 4278 (2019)
https://doi.org/10.1021/acsami.8b19836
38 M. Zhao, W. Xia, Y. Wang, M. Luo, Z. Tian, Y. Guo, W. Hu, and J. Xue, Nb2SiTe4: A stable narrow-gap twodimensional material with ambipolar transport and midinfrared response, ACS Nano 13(9), 10705 (2019)
https://doi.org/10.1021/acsnano.9b05080
39 X. Tang, H. Chen, J. S. Ponraj, S. C. Dhanabalan, Q. Xiao, D. Fan, and H. Zhang, Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots, Adv. Sci. 5(9), 1800420 (2018)
https://doi.org/10.1002/advs.201800420
40 M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, and W. Hu, Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability, ACS Nano 13, 2511 (2019)
https://doi.org/10.1021/acsnano.8b09476
41 R. Zhou, J. Peng, S. Yang, D. Liu, Y. Xiao, and G. Cao, Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application, Nanoscale 10(39), 18878 (2018)
https://doi.org/10.1039/C8NR06796A
42 K. Khan, A. K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, and Z. Guo, Recent developments in emerging two dimensional materials and their applications, J. Mater. Chem. C 8(2), 387 (2020)
https://doi.org/10.1039/C9TC04187G
43 L. Zhang, T. Gong, H. Wang, Z. Guo, and H. Zhang, Memristive devices based on emerging two dimensional materials beyond graphene, Nanoscale 11(26), 12413 (2019)
https://doi.org/10.1039/C9NR02886B
44 S. Xia, X. Zhai, L. Wang, B. Sun, J. Liu, and S. Wen, Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers, Opt. Express 24(16), 17886 (2016)
https://doi.org/10.1364/OE.24.017886
45 S. Xia, X. Zhai, L. Wang, and S. Wen, Plasmonically induced transparency in double-layered graphene nanoribbons, Photon. Res. 6(7), 692 (2018)
https://doi.org/10.1364/PRJ.6.000692
46 J. Guan, S. Xia, Z. Zhang, J. Wu, H. Meng, J. Yue, X. Zhai, L. Wang, and S. Wen, Two switchable plasmonically induced transparency effects in a system with distinct graphene resonators, Nanoscale Res. Lett. 15(1), 142 (2020)
https://doi.org/10.1186/s11671-020-03385-y
47 Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Opt. Express 18(8), 8367 (2010)
https://doi.org/10.1364/OE.18.008367
48 H. Xu, H. Li, B. Li, Z. He, Z. Chen, and M. Zheng, Influential and theoretical analysis of nano-defect in the stub resonator, Sci. Rep. 6(1), 30877 (2016)
https://doi.org/10.1038/srep30877
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed