1. Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China 2. IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France 3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. Nankai University, Tianjin 300071, China 6. Xinyang Normal University, Xinyang 464000, China 7. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 8. Hunan University, Changsha 410082, China 9. Nanjing University, Nanjing 210093, China 10. Huazhong University of Science and Technology, Wuhan 430074, China 11. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN), Italy 12. School of Physics, Peking University, Beijing 100871, China 13. Hunan Normal University, Changsha 410081, China 14. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 15. Nanjing Normal University, Nanjing 210023, China 16. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China 17. Southwest Jiaotong University, Chengdu 610000, China 18. Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia 19. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia 20. School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China 21. Lanzhou University, Lanzhou 730000, China 22. Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China 23. Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China 24. School of Physics, Southeast University, Nanjing 211189, China 25. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China 26. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 27. Department of Physics, Chongqing University, Chongqing 401331, China 28. Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081 1081HV Amsterdam, The Netherlands 29. Nikhef Theory Group Science Park 105, 1098 XG Amsterdam, The Netherlands 30. Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 31. Dalian University of Technology, Dalian 116024, China 32. National Centre for Nuclear Research (NCBJ), Pasteura 7, 02-093 Warsaw, Poland 33. School of Physics, Beihang University, Beijing 100191, China 34. Shanghai Jiao Tong University, Shanghai 200240, China 35. Lanzhou University of Technology, Lanzhou 730050, China 36. University of Science and Technology of China, Hefei 230026, China 37. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China 38. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 39. Huangshan University, Huangshan 245021, China 40. School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China 41. Tsinghua University, Beijing 100084, China 42. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 43. Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China 44. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China 45. School of Physics and Technology, Wuhan University, Wuhan 430072, China 46. Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China 47. School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm−2•s−1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.
The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.
This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.
P. A. Zyla, et al.(Particle Data Group), The review of particle physics, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
11
Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D17, 2717 (1978) https://doi.org/10.1103/PhysRevD.17.2717
J. J. Aubert, et al., The ratio of the nucleon structure functions F2N for iron and deuterium, Phys. Lett. B123, 275 (1983)
19
A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189, 483 (1987) https://doi.org/10.1016/0370-2693(87)90664-2
J. Seely, et al., New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett.103, 202301 (2009)
23
L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range corre- lations and the EMC effect, Phys. Rev. Lett.106, 052301 (2011) https://doi.org/10.1103/PhysRevLett.106.052301
24
J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear de- pendence of the EMC effect and short-range correlations, Phys. Rev. C86, 065204 (2012) https://doi.org/10.1103/PhysRevC.86.065204
25
O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys.89(4), 045002 (2017) https://doi.org/10.1103/RevModPhys.89.045002
F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys.112, 103757 (2020) https://doi.org/10.1016/j.ppnp.2020.103757
30
A. Accardi, et al., Electron Ion Collider: The next qcd frontier, Eur. Phys. J. A52(9), 268 (2016)
31
J. L. A. Fernandez, et al., A large hadron electron col- lider at CERN report on the physics and design concepts for machine and detector, J. Phys. G: Nucl. Part. Phys.39(7), 075001 (2012)
32
F. Gautheron, et al., COMPASS-II Proposal, 5 (2010)
J. Ashman, et al., A Measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon–proton scattering, Phys. Lett. B206, 364 (1988)
36
P. Amaudruz, et al., The Gottfried, sum from the ratio F2n/F2p, Phys. Rev. Lett.66,2712(1991)
37
M. Arneodo, et al., A reevaluation of the Gottfried sum, Phys. Rev. D50, R1 (1994)
38
K. Ackerstaff, et al., The flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering, Phys. Rev. Lett.81, 5519 (1998)
39
A. Baldit, et al., Study of the isospin symmetry breaking in the light quark sea of the nucleon from the Drell–Yan process, Phys. Lett. B332, 244 (1994)
40
R. S. Towell, et al., Improved measurement of the anti-d¯/anti−u¯ asymmetry in the nucleon sea, Phys. Rev. D64, 052002 (2001) https://doi.org/10.2172/1155653
C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C23, 487 (2002) https://doi.org/10.1007/s100520100855
44
J. Adam, et al., Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at s = 510 GeV, Phys. Rev. D99(5), 051102 (2019)
45
E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D75, 074027 (2007) https://doi.org/10.1103/PhysRevD.75.074027
46
M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D74, 014015 (2006) https://doi.org/10.1103/PhysRevD.74.014015
47
A. Airapetian, et al., Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D71, 012003 (2005)
48
A. Airapetian, et al., Measurement of parton distribu- tions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron, Phys. Lett. B666, 446 (2008)
49
D. de Florian, R. Sassot, M. Stratmann, and W. Vogel- sang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett.101, 072001 (2008) https://doi.org/10.1103/PhysRevLett.101.072001
50
A. Airapetian, et al., Flavor decomposition of the sea quark helicity distributions in the nucleon from semiinclu- sive deep inelastic scattering, Phys. Rev. Lett.92, 012005 (2004)
51
D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D100(11), 114027 (2019) https://doi.org/10.1103/PhysRevD.100.114027
52
C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D98(9), 094005 (2018) https://doi.org/10.1103/PhysRevD.98.094005
53
T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution func- tion sets in the Hessian approach (II): Phys. Rev. D100(11), 114024 (2019) https://doi.org/10.1103/PhysRevD.100.114024
54
R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973
55
J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev.185, 1975 (1969) https://doi.org/10.1103/PhysRev.185.1975
D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evo- lution kernels from light ray operators of QCD, Fortsch. Phys.42, 101 (1994) https://doi.org/10.1002/prop.2190420202
A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D70, 117504 (2004) https://doi.org/10.1103/PhysRevD.70.117504
63
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71, 034005 (2005) https://doi.org/10.1103/PhysRevD.71.034005
64
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell–Yan pro- cesses at low transverse momentum, Phys. Lett. B597, 299 (2004) https://doi.org/10.1016/j.physletb.2004.07.026
65
P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B461, 197 (1996) [Erratum: Nucl. Phys. B484, 538 (1997)] https://doi.org/10.1016/0550-3213(95)00632-X
66
D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D41, 83 (1990) https://doi.org/10.1103/PhysRevD.41.83
67
J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B396, 161 (1993) https://doi.org/10.1016/0550-3213(93)90262-N
68
S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530, 99 (2002) https://doi.org/10.1016/S0370-2693(02)01320-5
69
J. C. Collins, Leading twist single transverse-spin asym- metries: Drell–Yan and deep inelastic scattering, Phys. Lett. B536, 43 (2002) https://doi.org/10.1016/S0370-2693(02)01819-1
70
L. Adamczyk, et al., Measurement of the transverse single-spin asymmetry in p↑+p→W±/Z0 at RHIC, Phys. Rev. Lett.116(13), 132301 (2016)
71
M. Aghasyan, et al., First measurement of transversespin-dependent azimuthal asymmetries in the Drell–Yan process, Phys. Rev. Lett.119(11), 112002 (2017)
72
X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B652, 383 (2003) https://doi.org/10.1016/S0550-3213(03)00010-5
73
E. S. Ageev, et al., A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys. B765, 31 (2007)
74
M. Alekseev, et al., Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B673, 127 (2009)
75
M. G. Alekseev, et al., Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B692, 240 (2010)
76
C. Adolph, et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely po- larised protons, Phys. Lett. B744, 250 (2015)
77
X. Qian, et al., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett.107, 072003 (2011)
78
A. Airapetian, et al., Single-spin asymmetries in semiinclusive deep-inelastic scattering on a transversely polar- ized hydrogen target, Phys. Rev. Lett.94, 012002 (2005)
79
A. Airapetian, et al., Observation of the naive-t-odd sivers effect in deep-inelastic scattering, Phys. Rev. Lett.103, 152002 (2009)
80
M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP10, 122 (2019) https://doi.org/10.1007/JHEP10(2019)122
81
M. Boglione, U. D’Alesio, C. Flore, and J. O. GonzalezHernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP07, 148 (2018) https://doi.org/10.1007/JHEP07(2018)148
J. Collins and T. Rogers, Understanding the largedistance behavior of transverse-momentum-dependent parton densities and the Collins–Soper evolution kernel, Phys. Rev. D91(7), 074020 (2015) https://doi.org/10.1103/PhysRevD.91.074020
84
M. Diehl and S. Sapeta, On the analysis of lepton scat- tering on longitudinally or transversely polarized protons, Eur. Phys. J. C41, 515 (2005) https://doi.org/10.1140/epjc/s2005-02242-9
85
M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ→0, Phys. Rev. D62, 071503 (2000) [Erratum: Phys.Rev.D66, 119903 (2002)] https://doi.org/10.1103/PhysRevD.62.071503
86
M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A18, 173 (2003) https://doi.org/10.1142/S0217751X03012370
M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33(26), 1830025 (2018) https://doi.org/10.1142/S0217751X18300259
H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018) https://doi.org/10.1140/epjc/s10052-018-6359-y
K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B794, 244 (2008) https://doi.org/10.1016/j.nuclphysb.2007.10.029
M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys.76, 066202 (2013) https://doi.org/10.1088/0034-4885/76/6/066202
98
K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high- precision era, Eur. Phys. J. A52(6), 157 (2016) https://doi.org/10.1140/epja/i2016-16157-3
99
A. Airapetian, et al., Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10, 042 (2012)
C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser.299, 012006 (2011) https://doi.org/10.1088/1742-6596/299/1/012006
102
103
104
105
106
H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Comp- ton scattering at next-to-leading order, Phys. Rev. D87(5), 054029 (2013) https://doi.org/10.1103/PhysRevD.87.054029
107
V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D89(7), 074022 (2014) https://doi.org/10.1103/PhysRevD.89.074022
108
M. Defurne, et al., E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV, Phys. Rev. C92(5), 055202 (2015)
109
M. Defurne, et al., A glimpse of gluons through deeply virtual compton scattering on the proton, Nature Com- mun.8(1), 1408 (2017)
110
E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep- ph/0411389 (2004)
111
K. Kumericki, D. Mueller, and A. Schafer, Neural net- work generated parametrizations of deeply virtual Comp- ton form factors, JHEP07, 073 (2011) https://doi.org/10.1007/JHEP07(2011)073
S. V. Goloskokov and P. Kroll, Transversity in hard exclu- sive electroproduction of pseudoscalar mesons, Eur. Phys. J. A47, 112 (2011) https://doi.org/10.1140/epja/i2011-11112-6
116
P. Kroll, H. Moutarde, and F. Sabatie, From hard exclu- sive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C73(1), 2278 (2013) https://doi.org/10.1140/epjc/s10052-013-2278-0
117
A. Airapetian, et al., Measurement of azimuthal asym- metries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP06, 066 (2008)
118
G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D91(11), 114013 (2015) https://doi.org/10.1103/PhysRevD.91.114013
119
A. Kim, et al., Target and double spin asymmetries of deeply virtual π0 production with a longitudinally po- larized proton target and CLAS, Phys. Lett. B768, 168 (2017)
120
R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP09, 183 (2020) https://doi.org/10.1007/JHEP09(2020)183
121
K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Sal- gado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77(3), 163 (2017) https://doi.org/10.1140/epjc/s10052-017-4725-9
122
M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncer- tainties in next-to-leading order, Phys. Rev. C76, 065207 (2007) https://doi.org/10.1103/PhysRevC.76.065207
123
D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D85, 074028 (2012) https://doi.org/10.1103/PhysRevD.85.074028
124
K. Kovarik, et al., nCTEQ15: Global analysis of nu- clear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D93(8), 085037 (2016) https://doi.org/10.1103/PhysRevD.93.085037
125
H. Khanpour and S. A. Tehrani, Global analysis of nu- clear parton distribution functions and their uncertain- xt-to-next-to-leading order, Phys. Rev. D93(1), 014026 (2016) https://doi.org/10.1103/PhysRevD.93.014026
126
M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D100(9), 096015 (2019) https://doi.org/10.1103/PhysRevD.100.096015
127
J. Ashman, et al., A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C57, 211 (1993)
128
V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R=σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C86, 045201 (2012) https://doi.org/10.1103/PhysRevC.86.045201
I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and S. Nunes, Revisiting helicity parton distributions at a future electron–ion collider, Phys. Rev. D102(9), 094018 (2020) https://doi.org/10.1103/PhysRevD.102.094018
131
W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron–deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf.112, 01022 (2016) https://doi.org/10.1051/epjconf/201611201022
132
L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nu- clei, Phys. Rep.512, 255 (2012) https://doi.org/10.1016/j.physrep.2011.12.002
R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265 (1997) https://doi.org/10.1016/S0550-3213(96)00581-0
B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark–gluon plasma, JETP Lett.65, 615 (1997) https://doi.org/10.1134/1.567389
137
X.-F. Guo and X.-N. Wang, Multiple scattering, par- ton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett.85, 3591 (2000) https://doi.org/10.1103/PhysRevLett.85.3591
138
A. Airapetian, et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei, Nucl. Phys. B780, 1 (2007)
139
M. A. Vasilev, et al., Parton energy loss limits and shad- owing in Drell–Yan dimuon production, Phys. Rev. Lett.83, 2304 (1999)
N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial con- ditions for the modified evolution of fragmentation func- tions in the nuclear medium, Phys. Rev. C89(3), 034911 (2014) https://doi.org/10.1103/PhysRevC.89.034911
142
H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton en- ergy loss and modified beam quark distribution functions Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012) https://doi.org/10.1016/j.nuclphysa.2012.01.012
143
F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell–Yan process, JHEP01, 129 (2019) https://doi.org/10.1007/JHEP01(2019)129
144
A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B11, 475 (1980)
145
N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C44, 219 (2005) https://doi.org/10.1140/epjc/s2005-02366-x
146
K. M. Burke, et al., Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C90(1), 014909 (2014) https://doi.org/10.1103/PhysRevC.90.014909
147
P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)
148
P. A. Zyla, et al.(Particle Data Gruop), Review of particle properties, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP2016(6), 062C01 (2016) https://doi.org/10.1093/ptep/ptw045
Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.94, 282 (2017) https://doi.org/10.1016/j.ppnp.2017.01.002
S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.90(1), 015003 (2018) https://doi.org/10.1103/RevModPhys.90.015003
W. Altmannshofer, et al., The Belle II Physics Book, PTEP2019(12), 123C01 (2019) [Erratum: PTEP2020, 029201 (2020)]
166
A. Cerri, et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC Volume 7, pp 867–1158 (2019)
167
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep.873, 1 (2020) https://doi.org/10.1016/j.physrep.2020.05.001
168
Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.107, 237 (2019) https://doi.org/10.1016/j.ppnp.2019.04.003
169
Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G47(5), 053001 (2020) https://doi.org/10.1088/1361-6471/ab72b0
F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D86, 091501 (2012)
172
M. Aghasyan, et al., Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872), Phys. Lett. B 783, 334 (2018)
173
A. Ali, et al., First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123(7), 072001 (2019)
174
R. Aaij, et al., Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays, Phys. Rev. Lett.118(2), 022003 (2017)
175
R. Aaij, et al., Observation of J/ψp resonances consistent with pentaquark states in Λb0→J/ψK−p decays, Phys. Rev. Lett.115, 072001 (2015)
176
R. Aaij, et al., Observation of a narrow pentaquark state, Pc (4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett.122(22), 222001 (2019)
177
R. Mizuk, et al., Observation of a new structure near 10.75 GeV in the energy dependence of the e+e−→Y(nS)π+π− (n = 1, 2, 3) cross sections, JHEP10, 220 (2019)
178
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D17, 3090 (1978) [Erratum: Phys. Rev. D21, 313 (1980)] https://doi.org/10.1103/PhysRevD.17.3090
179
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D21, 203 (1980) https://doi.org/10.1103/PhysRevD.21.203
180
B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett.35, 1616 (1975) https://doi.org/10.1103/PhysRevLett.35.1616
181
U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett.35, 483 (1975) https://doi.org/10.1103/PhysRevLett.35.483
J. J. Aubert, et al., Production of charmed particles in 250-GeV µ+-iron interactions, Nucl. Phys. B213, 31 (1983)
190
M. I. Adamovich, et al., Cross-sections and some features of charm photoproduction at γ energies of 20 GeV to 70 GeV, Phys. Lett. B187, 437 (1987)
191
O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016) https://doi.org/10.1103/PhysRevD.94.074001
192
M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett.124(7), 072001 (2020) https://doi.org/10.1103/PhysRevLett.124.072001
193
J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N∗ and Λ∗ resonances with hidden charm above 4 GeV, Phys. Rev. Lett.105, 232001 (2010) https://doi.org/10.1103/PhysRevLett.105.232001
Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C36, 6 (2012) https://doi.org/10.1088/1674-1137/36/1/002
196
J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C85, 044002 (2012) https://doi.org/10.1103/PhysRevC.85.044002
197
C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D88, 056012 (2013) https://doi.org/10.1103/PhysRevD.88.056012
198
T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016) https://doi.org/10.1140/epja/i2016-16043-0
199
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett.115(12), 122001 (2015) https://doi.org/10.1103/PhysRevLett.115.122001
Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D95(11), 114017 (2017) https://doi.org/10.1103/PhysRevD.95.114017
202
Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D100(5), 056005 (2019) https://doi.org/10.1103/PhysRevD.100.056005
203
Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C80(4), 341 (2020) https://doi.org/10.1140/epjc/s10052-020-7890-1
204
Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the γp→D¯*0Λc+ reaction near threshold, Chin. Phys. C40(12), 124104 (2016) https://doi.org/10.1088/1674-1137/40/12/124104
S. Chekanov, et al., Exclusive photoproduction of upsilon mesons at HERA, Phys. Lett. B680, 4 (2009)
208
CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at SNN= 5.02 TeV (2016),
209
J. J. Aubert, et al., Observation of wrong sign trimuon events in 250-GeV muon–nucleon interactions, Phys. Lett. B106, 419 (1981)
210
C. Adloff, et al., Measurement of open beauty production at HERA, Phys. Lett. B467, 156 (1999) [Erratum: Phys. Lett. B518, 331 (2001)]
211
L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016) https://doi.org/10.1140/epja/i2016-16158-2
E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002) https://doi.org/10.1140/epjc/s2002-01058-5
214
E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003) https://doi.org/10.1103/PhysRevD.67.074023
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D92(7), 071502 (2015) https://doi.org/10.1103/PhysRevD.92.071502
Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B725(1–3), 106 (2013) https://doi.org/10.1016/j.physletb.2013.06.049
220
A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B772, 200 (2017) https://doi.org/10.1016/j.physletb.2017.06.030
C Adolph, et al., Search for exclusive photoproduction of Zc±(3900) at COMPASS, Phys. Lett. B742, 330 (2015)
228
X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D77, 094005 (2008) https://doi.org/10.1103/PhysRevD.77.094005
229
J. He and X. Liu, Discovery potential for charmoniumlike state Y (3940) by the meson photoproduction, Phys. Rev. D80, 114007 (2009) https://doi.org/10.1103/PhysRevD.80.114007
Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D89(3), 034016 (2014) https://doi.org/10.1103/PhysRevD.89.034016
233
Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G41(11), 115004 (2014) https://doi.org/10.1088/0954-3899/41/11/115004
234
Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D92, 034022 (2015) https://doi.org/10.1103/PhysRevD.92.034022
235
X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Zc+(4200), Phys. Rev. D92(9), 094017 (2015) https://doi.org/10.1103/PhysRevD.92.094017
236
V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photonnucleon collisions, Phys. Rev. D92(3), 031502 (2015) https://doi.org/10.1103/PhysRevD.92.031502
A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D94(3), 034002 (2016) https://doi.org/10.1103/PhysRevD.94.034002
239
Z. E. Meziani, et al., A search for the LHCb charmed “Pentaquark” using photo-production of J/ψ at threshold in hall C at Jefferson Lab, 9 (2016)
240
S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)
241
E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance Pc+(4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A978, 201 (2018) https://doi.org/10.1016/j.nuclphysa.2018.08.009
242
X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp→J/ψp reaction, Phys. Rev. D99(11), 114007 (2019)
X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D101(3), 034032 (2020)
245
X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D101(7), 074010 (2020) https://doi.org/10.1103/PhysRevD.101.074010
246
D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D100(3), 034019 (2019) https://doi.org/10.1103/PhysRevD.100.034019
247
Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ+p channel in electron–proton collisions, arXiv: 2003.11729 [hep-ph] (2020)
248
E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020) https://doi.org/10.1088/1674-1137/aba5f8
249
Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C44(8), 084102 (2020) https://doi.org/10.1088/1674-1137/44/8/084102
250
M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron–hadron facilities: Exclusive processes, Phys. Rev. D102, 114010 (2020) https://doi.org/10.1103/PhysRevD.102.114010
251
J.-J. Wu and B. S. Zou, Prediction of super-heavy N∗ and Λ∗ resonances with hidden beauty, Phys. Lett. B709, 70 (2012)
252
Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)
J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc (4450) states, Phys. Lett. B789, 562 (2019)
255
H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D99(1), 014010 (2019) https://doi.org/10.1103/PhysRevD.99.014010
C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C42(2), 023106 (2018) https://doi.org/10.1088/1674-1137/42/2/023106
258
C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A49, 139 (2013) https://doi.org/10.1140/epja/i2013-13139-y
259
R. Aaij, et al.(LHCb Collaboration), Study of the lineshape of the χc1(3872) state, Phys. Rev. D102, 092005
260
R. Aaij, et al.(LHCb Collaboration), Study of the ψ2(3823) and χc1(3872) states in B+→(Jψπ+π−)K+ decays, JHEP08, 123 (2020)
261
R. Aaij, et al., Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett.110, 222001 (2013)
262
S. K. Choi, et al., Observation of a narrow charmonium — like state in exclusive B±→K±π+π−J/ψ decays, Phys. Rev. Lett.91, 262001 (2003)
263
M. Ablikim, et al., Observation of a charged charmoniumlike structure in e+e−→π+π−J/ψ at s= 4.26GeV, Phys. Rev. Lett.110, 252001 (2013)
264
Z. Q. Liu, et al., Study of e+e−→π+π−J/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett.110, 252002 (2013) [Erratum: Phys. Rev. Lett.111, 019901 (2013)]
265
T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e−→ππJ/ψ at s= 4170 MeV, Phys. Lett. B727, 366 (2013)
266
V. M. Abazov, et al., Properties of Zc±(3900) produced in pp‾ collision, Phys. Rev. D100, 012005 (2019)
267
M. Ablikim, et al., Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett.119(7), 072001 (2017)
268
M. Ablikim, et al., Observation of Zc(3900)0 in e+e−→π0π0J/ψ, Phys. Rev. Lett.115(11), 112003 (2015)
Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Leptoproduction of hidden-charm exotic hadrons (2020) (in preparation)
271
C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett.103, 162001 (2009) https://doi.org/10.1103/PhysRevLett.103.162001
272
P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D83, 014019 (2011) https://doi.org/10.1103/PhysRevD.83.014019
273
F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys.61, 354 (2014) https://doi.org/10.1088/0253-6102/61/3/14
274
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C74(9), 3063 (2014) https://doi.org/10.1140/epjc/s10052-014-3063-4
275
M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017) https://doi.org/10.1088/1674-1137/41/12/121001
M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett.122(24), 242001 (2019) https://doi.org/10.1103/PhysRevLett.122.242001
Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett.121(21), 212001 (2018) https://doi.org/10.1103/PhysRevLett.121.212001
284
Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D94(5), 054503 (2016)
285
A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett.116(25), 252001 (2016) https://doi.org/10.1103/PhysRevLett.116.252001
286
G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93(9), 094504 (2016) https://doi.org/10.1103/PhysRevD.93.094504
B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]
293
J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006
294
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi130, 105 (1996)
295
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C9,459 (1999)
296
R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D101(11), 114004 (2020) https://doi.org/10.1103/PhysRevD.101.114004
297
J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A581, 397 (1995) https://doi.org/10.1016/0375-9474(94)00428-P
J. Volmer, et al., Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett.86, 1713 (2001)
300
T. Horn, et al., Determination of the charged pion form factor at Q2= 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett.97, 192001 (2006)
301
V. Tadevosyan, et al., Determination of the pion charge form-factor for Q2=0.60−1.60 GeV2, Phys. Rev. C75, 055205 (2007)
302
T. Horn, et al., Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78, 058201 (2008)
303
G. M. Huber, et al., Charged pion form-factor between Q2= 0.60GeV2 and 2.45 GeV2(II): Determination of, and results for, the pion form-factor, Phys. Rev. C78, 045203 (2008)
304
H. P. Blok, et al., Charged pion form factor between Q2=0.60 and 2.45 GeV2(I): Measurements of the cross section for the 1H(e, e′π+)n reaction, Phys. Rev. C78, 045202 (2008)
305
J. Badier, et al., Measurement of the K−/π− structure function ratio using the Drell–Yan process, Phys. Lett.93B, 354 (1980)
306
J. Badier, et al., Experimental determination of the π meson structure functions by the Drell–Yan mechanism, Z. Phys. C18, 281 (1983) https://doi.org/10.1007/BF01573728
307
B. Betev, et al., Observation of anomalous scaling violation in muon pair production by 194 GeV/cπ − tungsten interactions, Z. Phys. C28, 15 (1985) https://doi.org/10.1007/BF01550244
308
S. Falciano, et al., Angular distributions of muon pairs produced by 194 GeV/c negative pions, Z. Phys. C31, 513 (1986) https://doi.org/10.1007/BF01551072
309
M. Guanziroli, et al., Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C37, 545 (1988) https://doi.org/10.1007/BF01549713
310
J. S. Conway, et al., Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D39, 92 (1989) https://doi.org/10.1103/PhysRevD.39.92
311
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett.13, 138 (1964)
312
A. C. Aguilar, et al., Pion and kaon structure at the electron–ion collider, Eur. Phys. J. A55(10), 190 (2019)
313
C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)
314
S. Chekanov, et al., Leading neutron production in e+p collisions at HERA, Nucl. Phys. B637, 3 (2002)
315
F. D. Aaron, et al., Measurement of leading neutron production in deep-inelastic scattering at HERA, Eur. Phys. J. C68, 381 (2010)
316
S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C97(1), 015203 (2018) https://doi.org/10.1103/PhysRevC.97.015203
317
G. M. Huber, D. Gaskell, et al., Jefferson Lab Experiment E12-06-101 (2006)
318
T. Horn, G. M. Huber, et al., Scaling study of the L/Tseparated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)
319
D. Adikaram, et al., Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)
320
J. Annand, et al., Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2017)
321
D. Gaskell, et al., Jefferson Lab Experiment E12-19-006 (2019)
322
M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B400, 6 (1997) https://doi.org/10.1016/S0370-2693(97)00354-7
323
M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C57, 1454 (1998) https://doi.org/10.1103/PhysRevC.57.1454
324
T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e, e′π+)n, J. Korean Phys. Soc.67(7), 1089 (2015)
G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B87, 359 (1979) https://doi.org/10.1016/0370-2693(79)90554-9
328
G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157 (1980) https://doi.org/10.1103/PhysRevD.22.2157
329
S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)
330
V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15, 438 (1972) [Yad. Fiz.15, 781 (1972)]
Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]
333
R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)
334
D. Drijard, et al., Observation of charmed d meson production in pp collisions, Phys. Lett. B81, 250 (1979)
335
K. L. Giboni, et al., Diffractive production of the charmed baryon Λc+ at the CERN ISR, Phys. Lett. B85, 437 (1979)
336
W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Λc+ in inclusive pp→Λ°π+π+π−+X and pp→(K−π+p) +X at s= 53-GeV and 62-GeV, Phys. Lett. B85, 443 (1979)
H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys.114, 273 (1978) https://doi.org/10.1016/0003-4916(78)90270-1
S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys.2015, 231547 (2015) https://doi.org/10.1155/2015/231547
342
J. J. Aubert, et al., An experimental limit on the intrinsic charm component of the nucleon, Phys. Lett. B110, 73 (1982)
343
B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B461, 181 (1996) https://doi.org/10.1016/0550-3213(95)00652-4
344
V. M. Abazov, et al., Measurement of γ+b+X and γ+c+Xproduction cross sections in pp‾ collisions at s= 1.96 TeV, Phys. Rev. Lett.102, 192002 (2009)
345
E. M Aitala, et al., Asymmetries in the production of Λc+ and Λc− baryons in 500-GeV/c π–nucleon interactions, Phys. Lett. B495, 42 (2000)
346
E. M. Aitala, et al., Differential cross-sections, charge production asymmetry, and spin density matrix elements for D∗±(2010) produced in 500-GeV/c π−–nucleon interactions, Phys. Lett. B539, 218 (2002)
347
C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G34, 845 (2007)
348
G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D100(5), 054022 (2019)
349
G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D89(7), 074020 (2014)
350
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.177, 467 (2007)
351
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.181, 1144 (2010)
352
X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun.184, 1070 (2013) https://doi.org/10.1016/j.cpc.2012.10.022
S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep.522, 239 (2013) https://doi.org/10.1016/j.physrep.2012.10.001
355
C. Hadjidakis, et al., A fixed-target programme at the LHC: Physics case and projected performances for heavyion, hadron, spin and astroparticle studies, Phys. Rep.911, 1 (2018) https://doi.org/10.1016/j.physrep.2021.01.002
356
J. P. Lansberg, et al., A fixed-target experiment at the LHC (AFTER@LHC): Luminosities, target polarisation and a selection of physics studies, PoS QNP2012, 049 (2012) https://doi.org/10.22323/1.157.0049
357
J. P. Lansberg, et al., Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012: 547 (2013) https://doi.org/10.22323/1.174.0547
358
J. P. Lansberg, et al., AFTER@LHC: A precision machine to study the interface between particle and nuclear physics, EPJ Web Conf.66, 11023 (2014) https://doi.org/10.1051/epjconf/20146611023
359
G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D51, 1125 (1995) https://doi.org/10.1103/PhysRevD.51.1125
360
R. Aaij, et al., Observation of the doubly charmed baryon Ξcc++, Phys. Rev. Lett.119(11), 112001 (2017)
361
R. Aaij, et al., Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron.63(2), 221062 (2020)
362
M. Mattson, et al., First observation of the doubly charmed baryon Ξcc+, Phys. Rev. Lett. 89, 112001 (2002)
363
A. Ocherashvili, et al., Confirmation of the double charm baryon Ξcc+(3520) via its decay to pD+K−, Phys. Lett. B628, 18 (2005)
364
H.-W. Lin, et al., Parton distributions and lattice QCD calculations: A community white paper, Prog. Part. Nucl. Phys.100, 107 (2018)
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett.119(14), 142002 (2017) https://doi.org/10.1103/PhysRevLett.119.142002
367
J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D98(7), 074505 (2018) https://doi.org/10.1103/PhysRevD.98.074505
368
H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D98(9), 094512 (2018) https://doi.org/10.1103/PhysRevD.98.094512
369
D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett.113(1), 012001 (2014) https://doi.org/10.1103/PhysRevLett.113.012001
370
Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett.118(10), 102001 (2017) https://doi.org/10.1103/PhysRevLett.118.102001
371
Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018: 017 (2019)
M. Deka, et al., Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D91(1), 014505 (2015) https://doi.org/10.1103/PhysRevD.91.014505
374
C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D101(9), 094513 (2020) https://doi.org/10.1103/PhysRevD.101.094513
375
M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018) https://doi.org/10.22323/1.346.0047
376
M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe–Manohar orbital angular momentum, Phys. Rev. D95(9), 094505 (2017) https://doi.org/10.1103/PhysRevD.95.094505
Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D98(7), 074021 (2018) https://doi.org/10.1103/PhysRevD.98.074021
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, largemomentum effective theory, arXiv: 2004.03543 (2020)
381
H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett.121(24), 242003 (2018) https://doi.org/10.1103/PhysRevLett.121.242003
382
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.121(11), 112001 (2018) https://doi.org/10.1103/PhysRevLett.121.112001
383
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D98(9), 091503 (2018) https://doi.org/10.1103/PhysRevD.98.091503
384
J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D102(3), 034514 (2020) https://doi.org/10.1103/PhysRevD.102.034514
A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189(4), 483 (1987) https://doi.org/10.1016/0370-2693(87)90664-2
390
W. Detmold, M. Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020) https://doi.org/10.1103/PhysRevLett.126.202001
T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D99(1), 014514 (2019) https://doi.org/10.1103/PhysRevD.99.014514
L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP07, 126 (2012) https://doi.org/10.1007/JHEP07(2012)126
395
S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Zc+ channel using lattice QCD, Phys. Rev. D91(1), 014504 (2015)
396
Y. Chen, et al., Low-energy scattering of the (DD‾∗)± system and the resonance-like structure Zc(3900), Phys. Rev. D89(9), 094506 (2014)
397
Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett.117(24), 242001 (2016) https://doi.org/10.1103/PhysRevLett.117.242001
398
M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C68, 015203 (2003) https://doi.org/10.1103/PhysRevC.68.015203
399
P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D71, 054507 (2005) https://doi.org/10.1103/PhysRevD.71.054507
400
M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc.842(1), 225 (2006) https://doi.org/10.1063/1.2220232
D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations, Phys. Rev. D93(9), 096010 (2016) https://doi.org/10.1103/PhysRevD.93.096010
G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic threequark bound states, Prog. Part. Nucl. Phys.91, 1 (2016) https://doi.org/10.1016/j.ppnp.2016.07.001
S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)
408
Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C44(8), 083102 (2020) https://doi.org/10.1088/1674-1137/44/8/083102
409
C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29–August 2, 2019 (2019)
F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D96(3), 034024 (2017) https://doi.org/10.1103/PhysRevD.96.034024
E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell–Yan process, Phys. Rev. Lett.42, 940 (1979) https://doi.org/10.1103/PhysRevLett.42.940
415
R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys.82, 2991 (2010) https://doi.org/10.1103/RevModPhys.82.2991
K. Wijesooriya, P. E. Reimer, and R. J. Holt, The pion parton distribution function in the valence region, Phys. Rev. C72, 065203 (2005) https://doi.org/10.1103/PhysRevC.72.065203
418
M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett.105, 252003 (2010) https://doi.org/10.1103/PhysRevLett.105.252003
419
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys.44(3), 031002 (2020) https://doi.org/10.1088/1674-1137/44/3/031002
420
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D101(5), 054014 (2020) https://doi.org/10.1103/PhysRevD.101.054014
421
P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett.121(15), 152001 (2018) https://doi.org/10.1103/PhysRevLett.121.152001
422
J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D100(3), 034505 (2019) https://doi.org/10.1103/PhysRevD.100.034505
423
M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf= 2+ 1+ 1 dynamical quark flavors, Phys. Rev. D99(1), 014508 (2019)
424
N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019) https://doi.org/10.22323/1.334.0109
425
R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D99(7), 074507 (2019) https://doi.org/10.1103/PhysRevD.99.074507
426
L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett.110(13), 132001 (2013) https://doi.org/10.1103/PhysRevLett.110.132001
427
P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments, Phys. Rev. D45, 2349 (1992) https://doi.org/10.1103/PhysRevD.45.2349
428
B. Adams, et al., Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS, arXiv: 1808.00848V6 (2018)
429
W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pioninduced J/ψ production, Phys. Rev. D102, 054024 https://doi.org/10.1103/PhysRevD.102.054024
430
J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell–Yan processes, Phys. Lett. B361, 110 (1995) https://doi.org/10.1016/0370-2693(95)01132-A
431
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)
432
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C80(11), 1064 (2020) https://doi.org/10.1140/epjc/s10052-020-08578-4
Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D98(5), 054019 (2018) https://doi.org/10.1103/PhysRevD.98.054019
C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B741, 190 (2015) https://doi.org/10.1016/j.physletb.2014.12.027
437
C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe–Salpeter wave functions to generalised parton distributions, Few Body Syst.57(9), 729 (2016) https://doi.org/10.1007/s00601-016-1119-8
438
N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B780, 287 (2018) https://doi.org/10.1016/j.physletb.2018.02.070
439
S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D97(9), 094014 (2018) https://doi.org/10.1103/PhysRevD.97.094014
I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, et al., Polarized proton collider at RHIC, Nuclear Instruments and Methods in Physics Research Section A499(2–3), 392 (2003)
443
L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, et al., Electron cooling system in the booster synchrotron of the HIAF project, Nuclear Instruments and Methods in Physics Research Section A786, 91 (2015) https://doi.org/10.1016/j.nima.2015.03.052
444
A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments81(2), 02B308 (2010) https://doi.org/10.1063/1.3266140
445
E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A947, 162734 (2019) https://doi.org/10.1016/j.nima.2019.162734
U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA39(10), 859 (1949) https://doi.org/10.1364/JOSA.39.000859
448
J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research204(2–3), 261 (1983) https://doi.org/10.1016/0167-5087(83)90056-X
449
S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck, et al., Science requirements and conceptual design for a polarized medium energy electron–ion collider at Jefferson lab, arXiv: 1209.0757 (2012)
450
K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)
451
T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.135, 238 (2001) https://doi.org/10.1016/S0010-4655(00)00236-8
452
N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)
J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo, et al., A novel comparison of moller and compton electron–beam polarimeters, Phys. Lett. B766, 339 (2017) https://doi.org/10.1016/j.physletb.2017.01.026
456
I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC‐pp RUN05 using CNI pC‐polarimeter, AIP Conf. Proc.915(1), 912 (2007) https://doi.org/10.1063/1.2750924
457
I. G. Alekseev, A. Bravar, G. Bunce, et al., Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target, Phys. Rev. D79, 094014 (2009) https://doi.org/10.1103/PhysRevD.79.094014
458
G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A831, 7 (2016) https://doi.org/10.1016/j.nima.2016.04.109
459
R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A898, 90 (2018) https://doi.org/10.1016/j.nima.2018.04.052
460
F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A805, 2 (2016), Special issue in memory of G. F. Knoll https://doi.org/10.1016/j.nima.2015.07.060
461
W. Erni, et al., Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker, Eur. Phys. J. A49, 25 (2013)
462
M. Ablikim, et al., Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A614(3), 345 (2010)
J. Smyrski. Overview of the panda experiment, Physic Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011) https://doi.org/10.1016/j.phpro.2012.02.359
465
L. Barion, et al., RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm, JINST15(02), C02040 (2020) https://doi.org/10.1088/1748-0221/15/02/C02040
466
I. Adam, et al., The dirc particle identification system for the BaBar experiment, Nuclear Instruments and Methods in Physics Research Section A538(1), 281 (2005) https://doi.org/10.2172/827315
467
A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation15(04), C04054 (2020) https://doi.org/10.1088/1748-0221/15/04/C04054