Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (6): 64701   https://doi.org/10.1007/s11467-021-1062-0
  本期目录
Electron-ion collider in China
Daniele P. Anderle1, Valerio Bertone2, Xu Cao3,4, Lei Chang5, Ningbo Chang6, Gu Chen7, Xurong Chen3,4, Zhuojun Chen8, Zhufang Cui9, Lingyun Dai8, Weitian Deng10, Minghui Ding11, Xu Feng12, Chang Gong12, Longcheng Gui13, Feng-Kun Guo4,14, Chengdong Han3,4, Jun He15, Tie-Jiun Hou16, Hongxia Huang15, Yin Huang17, KrešImir KumeričKi18, L. P. Kaptari3,19, Demin Li20, Hengne Li1, Minxiang Li3,21, Xueqian Li5, Yutie Liang3,4, Zuotang Liang22, Chen Liu22, Chuan Liu12, Guoming Liu1, Jie Liu3,4, Liuming Liu3,4, Xiang Liu21, Tianbo Liu22, Xiaofeng Luo23, Zhun Lyu24, Boqiang Ma12, Fu Ma3,4, Jianping Ma4,14, Yugang Ma4,25,26, Lijun Mao3,4, Cédric Mezrag2, Hervé Moutarde2, Jialun Ping15, Sixue Qin27, Hang Ren3,4, Craig D. Roberts9, Juan Rojo28,29, Guodong Shen3,4, Chao Shi30, Qintao Song20, Hao Sun31, Paweł Sznajder32, Enke Wang1, Fan Wang9, Qian Wang1, Rong Wang3,4, Ruiru Wang3,4, Taofeng Wang33, Wei Wang34, Xiaoyu Wang20, Xiaoyun Wang35, Jiajun Wu4, Xinggang Wu27, Lei Xia36, Bowen Xiao23,37, Guoqing Xiao3,4, Ju-Jun Xie3,4, Yaping Xie3,4, Hongxi Xing1, Hushan Xu3,4, Nu Xu3,4,23, Shusheng Xu38, Mengshi Yan12, Wenbiao Yan36, Wencheng Yan20, Xinhu Yan39, Jiancheng Yang3,4, Yi-Bo Yang4,14, Zhi Yang40, Deliang Yao8, Zhihong Ye41, Peilin Yin38, C.-P. Yuan42, Wenlong Zhan3,4, Jianhui Zhang43, Jinlong Zhang22, Pengming Zhang44, Yifei Zhang36, Chao-Hsi Chang4,14, Zhenyu Zhang45, Hongwei Zhao3,4, Kuang-Ta Chao12, Qiang Zhao4,46, Yuxiang Zhao3,4, Zhengguo Zhao36, Liang Zheng47, Jian Zhou22, Xiang Zhou45, Xiaorong Zhou36, Bingsong Zou4,14, Liping Zou3,4
1. Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
2. IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. Nankai University, Tianjin 300071, China
6. Xinyang Normal University, Xinyang 464000, China
7. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
8. Hunan University, Changsha 410082, China
9. Nanjing University, Nanjing 210093, China
10. Huazhong University of Science and Technology, Wuhan 430074, China
11. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN), Italy
12. School of Physics, Peking University, Beijing 100871, China
13. Hunan Normal University, Changsha 410081, China
14. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
15. Nanjing Normal University, Nanjing 210023, China
16. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
17. Southwest Jiaotong University, Chengdu 610000, China
18. Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
19. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
20. School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
21. Lanzhou University, Lanzhou 730000, China
22. Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
23. Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
24. School of Physics, Southeast University, Nanjing 211189, China
25. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
26. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
27. Department of Physics, Chongqing University, Chongqing 401331, China
28. Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081 1081HV Amsterdam, The Netherlands
29. Nikhef Theory Group Science Park 105, 1098 XG Amsterdam, The Netherlands
30. Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
31. Dalian University of Technology, Dalian 116024, China
32. National Centre for Nuclear Research (NCBJ), Pasteura 7, 02-093 Warsaw, Poland
33. School of Physics, Beihang University, Beijing 100191, China
34. Shanghai Jiao Tong University, Shanghai 200240, China
35. Lanzhou University of Technology, Lanzhou 730050, China
36. University of Science and Technology of China, Hefei 230026, China
37. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
38. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
39. Huangshan University, Huangshan 245021, China
40. School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
41. Tsinghua University, Beijing 100084, China
42. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
43. Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
44. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
45. School of Physics and Technology, Wuhan University, Wuhan 430072, China
46. Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
47. School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(11129 KB)  
Abstract

Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm2•s1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.

The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.

This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.

Key wordselectron ion collider    nucleon structure    nucleon mass    exotic hadronic states    quantum chromodynamics    3D-tomography    helicity    transverse momentum dependent parton distribution    generalized parton distribution    energy recovery linac    polarization    spin rotator
收稿日期: 2020-08-08      出版日期: 2021-06-21
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(6): 64701.
Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou. Electron-ion collider in China. Front. Phys. , 2021, 16(6): 64701.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1062-0
https://academic.hep.com.cn/fop/CN/Y2021/V16/I6/64701
1 C. Seife, Illuminating the dark universe, Science 302(5653), 2038 (2003)
https://doi.org/10.1126/science.302.5653.2038
2 S. Weinberg, A model of leptons, Phys. Rev. Lett.19, 1264 (1967)
https://doi.org/10.1103/PhysRevLett.19.1264
3 A. Salam and J. C. Ward, Weak and electromagnetic interactions, Nuovo Cim.11, 568 (1959)
https://doi.org/10.1007/BF02726525
4 S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys.10, 107 (1959)
https://doi.org/10.1016/0029-5582(59)90196-8
5 D. J. Gross and F. Wilczek, Asymptotically free gauge theories (I): Phys. Rev. D8, 3633 (1973)
https://doi.org/10.1103/PhysRevD.8.3633
6 D. J. Gross and F. Wilczek, Asymptotically free gauge theories (II): Phys. Rev. D9, 980 (1974)
https://doi.org/10.1103/PhysRevD.9.980
7 S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43, 1566 (1979)
https://doi.org/10.1103/PhysRevLett.43.1566
8 F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13, 321 (1964)
https://doi.org/10.1103/PhysRevLett.13.321
9 P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13, 508 (1964)
https://doi.org/10.1103/PhysRevLett.13.508
10 P. A. Zyla, et al.(Particle Data Group), The review of particle physics, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
11 Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D17, 2717 (1978)
https://doi.org/10.1103/PhysRevD.17.2717
12 D. J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30, 1343 (1973)
https://doi.org/10.1103/PhysRevLett.30.1343
13 H. D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett.30, 1346 (1973)
https://doi.org/10.1103/PhysRevLett.30.1346
14 M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett.8, 214 (1964)
https://doi.org/10.1016/S0031-9163(64)92001-3
15 G. Zweig, An SU (3) model for strong interaction symmetry and its breaking, Version 1, CERN-TH-4011 (1964)
16 E. D. Bloom, et al., High-energy in elastic ep scattering at 6◦ and 10◦, Phys. Rev. Lett.23, 930 (1969)
17 C. Chang, et al., Observed deviations from scale invari- ance in high-energy muon scattering, Phys. Rev. Lett.35, 901 (1975)
https://doi.org/10.1103/PhysRevLett.35.901
18 J. J. Aubert, et al., The ratio of the nucleon structure functions F2N for iron and deuterium, Phys. Lett. B123, 275 (1983)
19 A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189, 483 (1987)
https://doi.org/10.1016/0370-2693(87)90664-2
20 J. Gomez, et al., Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D49, 4348 (1994)
https://doi.org/10.1103/PhysRevD.49.4348
21 D. F. Geesaman, K. Saito, and A. W. Thomas, The nu- clear EMC effect, Ann. Rev. Nucl. Part. Sci.45, 337 (1995)
https://doi.org/10.1146/annurev.ns.45.120195.002005
22 J. Seely, et al., New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett.103, 202301 (2009)
23 L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range corre- lations and the EMC effect, Phys. Rev. Lett.106, 052301 (2011)
https://doi.org/10.1103/PhysRevLett.106.052301
24 J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear de- pendence of the EMC effect and short-range correlations, Phys. Rev. C86, 065204 (2012)
https://doi.org/10.1103/PhysRevC.86.065204
25 O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys.89(4), 045002 (2017)
https://doi.org/10.1103/RevModPhys.89.045002
26 S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D32, 189 (1985)
https://doi.org/10.1103/PhysRevD.32.189
27 S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, AIP Conf. Proc.132, 267 (1985)
https://doi.org/10.1063/1.35361
28 S. Coleman and R. E. Norton, Singularities in the physi- cal region, Nuovo Cim.38, 438 (1965)
https://doi.org/10.1007/BF02750472
29 F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys.112, 103757 (2020)
https://doi.org/10.1016/j.ppnp.2020.103757
30 A. Accardi, et al., Electron Ion Collider: The next qcd frontier, Eur. Phys. J. A52(9), 268 (2016)
31 J. L. A. Fernandez, et al., A large hadron electron col- lider at CERN report on the physics and design concepts for machine and detector, J. Phys. G: Nucl. Part. Phys.39(7), 075001 (2012)
32 F. Gautheron, et al., COMPASS-II Proposal, 5 (2010)
33 G. van der Steenhoven, The HERMES experiment, Prog. Part. Nucl. Phys.55, 181 (2005)
https://doi.org/10.1016/j.ppnp.2005.01.011
34 W. Braunschweig and H1 Collaboration, Status HERA and the experiments H1 and ZEUS, Nucl. Phys. B: Proc. Suppl.31, 206 (1993)
https://doi.org/10.1016/0920-5632(93)90135-S
35 J. Ashman, et al., A Measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon–proton scattering, Phys. Lett. B206, 364 (1988)
36 P. Amaudruz, et al., The Gottfried, sum from the ratio F2n/F2p, Phys. Rev. Lett.66,2712(1991)
37 M. Arneodo, et al., A reevaluation of the Gottfried sum, Phys. Rev. D50, R1 (1994)
38 K. Ackerstaff, et al., The flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering, Phys. Rev. Lett.81, 5519 (1998)
39 A. Baldit, et al., Study of the isospin symmetry breaking in the light quark sea of the nucleon from the Drell–Yan process, Phys. Lett. B332, 244 (1994)
40 R. S. Towell, et al., Improved measurement of the anti-d¯/anti−u¯ asymmetry in the nucleon sea, Phys. Rev. D64, 052002 (2001)
https://doi.org/10.2172/1155653
41 R. S. Bhalerao, Is the polarized anti-quark sea in the nu- cleon flavor symmetric? Phys. Rev. C63, 025208 (2001)
https://doi.org/10.1103/PhysRevC.63.025208
42 J.-C. Peng, Flavor structure of the nucleon sea, Eur. Phys. J. A18, 395 (2003)
https://doi.org/10.1140/epja/i2002-10243-1
43 C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C23, 487 (2002)
https://doi.org/10.1007/s100520100855
44 J. Adam, et al., Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at s = 510 GeV, Phys. Rev. D99(5), 051102 (2019)
45 E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D75, 074027 (2007)
https://doi.org/10.1103/PhysRevD.75.074027
46 M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D74, 014015 (2006)
https://doi.org/10.1103/PhysRevD.74.014015
47 A. Airapetian, et al., Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D71, 012003 (2005)
48 A. Airapetian, et al., Measurement of parton distribu- tions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron, Phys. Lett. B666, 446 (2008)
49 D. de Florian, R. Sassot, M. Stratmann, and W. Vogel- sang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett.101, 072001 (2008)
https://doi.org/10.1103/PhysRevLett.101.072001
50 A. Airapetian, et al., Flavor decomposition of the sea quark helicity distributions in the nucleon from semiinclu- sive deep inelastic scattering, Phys. Rev. Lett.92, 012005 (2004)
51 D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D100(11), 114027 (2019)
https://doi.org/10.1103/PhysRevD.100.114027
52 C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D98(9), 094005 (2018)
https://doi.org/10.1103/PhysRevD.98.094005
53 T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution func- tion sets in the Hessian approach (II): Phys. Rev. D100(11), 114024 (2019)
https://doi.org/10.1103/PhysRevD.100.114024
54 R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973
55 J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev.185, 1975 (1969)
https://doi.org/10.1103/PhysRev.185.1975
56 J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B193, 381 (1981) [Erratum: Nucl. Phys.B213, 545 (1983)]
https://doi.org/10.1016/0550-3213(81)90339-4
57 J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B194, 445 (1982)
https://doi.org/10.1016/0550-3213(82)90021-9
58 D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evo- lution kernels from light ray operators of QCD, Fortsch. Phys.42, 101 (1994)
https://doi.org/10.1002/prop.2190420202
59 X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D55, 7114 (1997)
https://doi.org/10.1103/PhysRevD.55.7114
60 X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett.78, 610 (1997)
https://doi.org/10.1103/PhysRevLett.78.610
61 A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D56, 5524 (1997)
https://doi.org/10.1103/PhysRevD.56.5524
62 A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D70, 117504 (2004)
https://doi.org/10.1103/PhysRevD.70.117504
63 X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71, 034005 (2005)
https://doi.org/10.1103/PhysRevD.71.034005
64 X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell–Yan pro- cesses at low transverse momentum, Phys. Lett. B597, 299 (2004)
https://doi.org/10.1016/j.physletb.2004.07.026
65 P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B461, 197 (1996) [Erratum: Nucl. Phys. B484, 538 (1997)]
https://doi.org/10.1016/0550-3213(95)00632-X
66 D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D41, 83 (1990)
https://doi.org/10.1103/PhysRevD.41.83
67 J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B396, 161 (1993)
https://doi.org/10.1016/0550-3213(93)90262-N
68 S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530, 99 (2002)
https://doi.org/10.1016/S0370-2693(02)01320-5
69 J. C. Collins, Leading twist single transverse-spin asym- metries: Drell–Yan and deep inelastic scattering, Phys. Lett. B536, 43 (2002)
https://doi.org/10.1016/S0370-2693(02)01819-1
70 L. Adamczyk, et al., Measurement of the transverse single-spin asymmetry in p↑+p→W±/Z0 at RHIC, Phys. Rev. Lett.116(13), 132301 (2016)
71 M. Aghasyan, et al., First measurement of transversespin-dependent azimuthal asymmetries in the Drell–Yan process, Phys. Rev. Lett.119(11), 112002 (2017)
72 X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B652, 383 (2003)
https://doi.org/10.1016/S0550-3213(03)00010-5
73 E. S. Ageev, et al., A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys. B765, 31 (2007)
74 M. Alekseev, et al., Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B673, 127 (2009)
75 M. G. Alekseev, et al., Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B692, 240 (2010)
76 C. Adolph, et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely po- larised protons, Phys. Lett. B744, 250 (2015)
77 X. Qian, et al., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett.107, 072003 (2011)
78 A. Airapetian, et al., Single-spin asymmetries in semiinclusive deep-inelastic scattering on a transversely polar- ized hydrogen target, Phys. Rev. Lett.94, 012002 (2005)
79 A. Airapetian, et al., Observation of the naive-t-odd sivers effect in deep-inelastic scattering, Phys. Rev. Lett.103, 152002 (2009)
80 M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP10, 122 (2019)
https://doi.org/10.1007/JHEP10(2019)122
81 M. Boglione, U. D’Alesio, C. Flore, and J. O. GonzalezHernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP07, 148 (2018)
https://doi.org/10.1007/JHEP07(2018)148
82 H. Dong, Du-X Zheng, and J. Zhou, Sea quark Sivers distribution, Phys. Lett. B788, 401 (2019)
https://doi.org/10.1016/j.physletb.2018.11.010
83 J. Collins and T. Rogers, Understanding the largedistance behavior of transverse-momentum-dependent parton densities and the Collins–Soper evolution kernel, Phys. Rev. D91(7), 074020 (2015)
https://doi.org/10.1103/PhysRevD.91.074020
84 M. Diehl and S. Sapeta, On the analysis of lepton scat- tering on longitudinally or transversely polarized protons, Eur. Phys. J. C41, 515 (2005)
https://doi.org/10.1140/epjc/s2005-02242-9
85 M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ→0, Phys. Rev. D62, 071503 (2000) [Erratum: Phys.Rev.D66, 119903 (2002)]
https://doi.org/10.1103/PhysRevD.62.071503
86 M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A18, 173 (2003)
https://doi.org/10.1142/S0217751X03012370
87 M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B555, 57 (2003)
https://doi.org/10.1016/S0370-2693(03)00036-4
88 C. Lorcé, H. Moutarde, and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C79(1), 89 (2019)
https://doi.org/10.1140/epjc/s10052-019-6572-3
89 P. E. Shanahan and W. Detmold, Pressure distribution and shear forces inside the proton, Phys. Rev. Lett.122(7), 072003 (2019)
https://doi.org/10.1103/PhysRevLett.122.072003
90 M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33(26), 1830025 (2018)
https://doi.org/10.1142/S0217751X18300259
91 V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure distribution inside the proton, Nature557(7705), 396 (2018)
https://doi.org/10.1038/s41586-018-0060-z
92 K. Kumerivcki, Measurability of pressure inside the proton, Nature570(7759), E1 (2019)
https://doi.org/10.1038/s41586-019-1211-6
93 H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018)
https://doi.org/10.1140/epjc/s10052-018-6359-y
94 H. Moutarde, P. Sznajder, and J. Wagner, Unbiased determination of DVCS Compton form factors, Eur. Phys. J. C79(7), 614 (2019)
https://doi.org/10.1140/epjc/s10052-019-7117-5
95 K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B794, 244 (2008)
https://doi.org/10.1016/j.nuclphysb.2007.10.029
96 K. Kumerivcki and D. Mueller, Deeply virtual Compton scattering at small xB and the access to the GPD H, Nucl. Phys. B841, 1 (2010)
https://doi.org/10.1016/j.nuclphysb.2010.07.015
97 M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys.76, 066202 (2013)
https://doi.org/10.1088/0034-4885/76/6/066202
98 K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high- precision era, Eur. Phys. J. A52(6), 157 (2016)
https://doi.org/10.1140/epja/i2016-16157-3
99 A. Airapetian, et al., Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10, 042 (2012)
100 A. Sandacz, COMPASS results on DVCS and exclusive π0 production, J. Phys. Conf. Ser.938(1), 012015 (2017)
https://doi.org/10.1088/1742-6596/938/1/012015
101 C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser.299, 012006 (2011)
https://doi.org/10.1088/1742-6596/299/1/012006
102
103
104
105
106 H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Comp- ton scattering at next-to-leading order, Phys. Rev. D87(5), 054029 (2013)
https://doi.org/10.1103/PhysRevD.87.054029
107 V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D89(7), 074022 (2014)
https://doi.org/10.1103/PhysRevD.89.074022
108 M. Defurne, et al., E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV, Phys. Rev. C92(5), 055202 (2015)
109 M. Defurne, et al., A glimpse of gluons through deeply virtual compton scattering on the proton, Nature Com- mun.8(1), 1408 (2017)
110 E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep- ph/0411389 (2004)
111 K. Kumericki, D. Mueller, and A. Schafer, Neural net- work generated parametrizations of deeply virtual Comp- ton form factors, JHEP07, 073 (2011)
https://doi.org/10.1007/JHEP07(2011)073
112 B. Berthou, et al., PARTONS: PArtonic tomography of nucleon software, Eur. Phys. J. C78(6), 478 (2018)
https://doi.org/10.1140/epjc/s10052-018-5948-0
113 M. Cuic, K. Kumericki, and A. Schafer, separation of quark flavors using DVCS data, arXiv: 2007.00029 [hep- ph] (2020)
114 S. V. Goloskokov and P. Kroll, An Attempt to understand exclusive π+ electroproduction, Eur. Phys. J. C65, 137 (2010)
https://doi.org/10.1140/epjc/s10052-009-1178-9
115 S. V. Goloskokov and P. Kroll, Transversity in hard exclu- sive electroproduction of pseudoscalar mesons, Eur. Phys. J. A47, 112 (2011)
https://doi.org/10.1140/epja/i2011-11112-6
116 P. Kroll, H. Moutarde, and F. Sabatie, From hard exclu- sive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C73(1), 2278 (2013)
https://doi.org/10.1140/epjc/s10052-013-2278-0
117 A. Airapetian, et al., Measurement of azimuthal asym- metries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP06, 066 (2008)
118 G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D91(11), 114013 (2015)
https://doi.org/10.1103/PhysRevD.91.114013
119 A. Kim, et al., Target and double spin asymmetries of deeply virtual π0 production with a longitudinally po- larized proton target and CLAS, Phys. Lett. B768, 168 (2017)
120 R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP09, 183 (2020)
https://doi.org/10.1007/JHEP09(2020)183
121 K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Sal- gado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77(3), 163 (2017)
https://doi.org/10.1140/epjc/s10052-017-4725-9
122 M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncer- tainties in next-to-leading order, Phys. Rev. C76, 065207 (2007)
https://doi.org/10.1103/PhysRevC.76.065207
123 D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D85, 074028 (2012)
https://doi.org/10.1103/PhysRevD.85.074028
124 K. Kovarik, et al., nCTEQ15: Global analysis of nu- clear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D93(8), 085037 (2016)
https://doi.org/10.1103/PhysRevD.93.085037
125 H. Khanpour and S. A. Tehrani, Global analysis of nu- clear parton distribution functions and their uncertain- xt-to-next-to-leading order, Phys. Rev. D93(1), 014026 (2016)
https://doi.org/10.1103/PhysRevD.93.014026
126 M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D100(9), 096015 (2019)
https://doi.org/10.1103/PhysRevD.100.096015
127 J. Ashman, et al., A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C57, 211 (1993)
128 V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R=σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C86, 045201 (2012)
https://doi.org/10.1103/PhysRevC.86.045201
129 B. Schmookler, et al., Modified structure of protons and neutrons in correlated pairs, Nature 566(7744), 354 (2019)
https://doi.org/10.1038/s41586-019-0925-9
130 I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and S. Nunes, Revisiting helicity parton distributions at a future electron–ion collider, Phys. Rev. D102(9), 094018 (2020)
https://doi.org/10.1103/PhysRevD.102.094018
131 W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron–deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf.112, 01022 (2016)
https://doi.org/10.1051/epjconf/201611201022
132 L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nu- clei, Phys. Rep.512, 255 (2012)
https://doi.org/10.1016/j.physrep.2011.12.002
133 M. Gyulassy and X.-N. Wang, Multiple collisions and in- duced gluon Bremsstrahlung in QCD, Nucl. Phys. B420, 583 (1994)
https://doi.org/10.1016/0550-3213(94)90079-5
134 R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265 (1997)
https://doi.org/10.1016/S0550-3213(96)00581-0
135 M. Gyulassy, P. Levai, and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B594, 371 (2001)
https://doi.org/10.1016/S0550-3213(00)00652-0
136 B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark–gluon plasma, JETP Lett.65, 615 (1997)
https://doi.org/10.1134/1.567389
137 X.-F. Guo and X.-N. Wang, Multiple scattering, par- ton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett.85, 3591 (2000)
https://doi.org/10.1103/PhysRevLett.85.3591
138 A. Airapetian, et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei, Nucl. Phys. B780, 1 (2007)
139 M. A. Vasilev, et al., Parton energy loss limits and shad- owing in Drell–Yan dimuon production, Phys. Rev. Lett.83, 2304 (1999)
140 E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett.89, 162301 (2002)
https://doi.org/10.1103/PhysRevLett.89.162301
141 N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial con- ditions for the modified evolution of fragmentation func- tions in the nuclear medium, Phys. Rev. C89(3), 034911 (2014)
https://doi.org/10.1103/PhysRevC.89.034911
142 H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton en- ergy loss and modified beam quark distribution functions Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012)
https://doi.org/10.1016/j.nuclphysa.2012.01.012
143 F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell–Yan process, JHEP01, 129 (2019)
https://doi.org/10.1007/JHEP01(2019)129
144 A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B11, 475 (1980)
145 N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C44, 219 (2005)
https://doi.org/10.1140/epjc/s2005-02366-x
146 K. M. Burke, et al., Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C90(1), 014909 (2014)
https://doi.org/10.1103/PhysRevC.90.014909
147 P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)
148 P. A. Zyla, et al.(Particle Data Gruop), Review of particle properties, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
149 R. L. Jaffe, Exotica, Phys. Rep.409, 1 (2005)
https://doi.org/10.1016/j.physrep.2004.11.005
150 E. S. Swanson, The new heavy mesons: A status report, Phys. Rep.429, 243 (2006)
https://doi.org/10.1016/j.physrep.2006.04.003
151 M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys.61, 455 (2008)
https://doi.org/10.1016/j.ppnp.2008.02.001
152 E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts, Phys. Rep.454, 1 (2007)
https://doi.org/10.1016/j.physrep.2007.07.006
153 E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys.82, 1095 (2010)
https://doi.org/10.1103/RevModPhys.82.1095
154 N. Brambilla, et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C71, 1534 (2011)
155 H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep.639, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.05.004
156 A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP2016(6), 062C01 (2016)
https://doi.org/10.1093/ptep/ptw045
157 R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys.93, 143 (2017)
https://doi.org/10.1016/j.ppnp.2016.11.003
158 A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep.668, 1 (2017)
https://doi.org/10.1016/j.physrep.2016.11.002
159 F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys.90(1), 015004 (2018)
https://doi.org/10.1103/RevModPhys.90.015004
160 Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.94, 282 (2017)
https://doi.org/10.1016/j.ppnp.2017.01.002
161 A. Ali, J. Sören Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys.97, 123 (2017)
https://doi.org/10.1016/j.ppnp.2017.08.003
162 S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.90(1), 015003 (2018)
https://doi.org/10.1103/RevModPhys.90.015003
163 M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)
https://doi.org/10.1146/annurev-nucl-101917-020902
164 C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A33(21), 1830018 (2018)
https://doi.org/10.1142/S0217751X18300181
165 W. Altmannshofer, et al., The Belle II Physics Book, PTEP2019(12), 123C01 (2019) [Erratum: PTEP2020, 029201 (2020)]
166 A. Cerri, et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC Volume 7, pp 867–1158 (2019)
167 N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep.873, 1 (2020)
https://doi.org/10.1016/j.physrep.2020.05.001
168 Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.107, 237 (2019)
https://doi.org/10.1016/j.ppnp.2019.04.003
169 Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G47(5), 053001 (2020)
https://doi.org/10.1088/1361-6471/ab72b0
170 T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D72, 054026 (2005)
https://doi.org/10.1103/PhysRevD.72.054026
171 F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D86, 091501 (2012)
172 M. Aghasyan, et al., Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872), Phys. Lett. B 783, 334 (2018)
173 A. Ali, et al., First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123(7), 072001 (2019)
174 R. Aaij, et al., Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays, Phys. Rev. Lett.118(2), 022003 (2017)
175 R. Aaij, et al., Observation of J/ψp resonances consistent with pentaquark states in Λb0→J/ψK−p decays, Phys. Rev. Lett.115, 072001 (2015)
176 R. Aaij, et al., Observation of a narrow pentaquark state, Pc (4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett.122(22), 222001 (2019)
177 R. Mizuk, et al., Observation of a new structure near 10.75 GeV in the energy dependence of the e+e−→Y(nS)π+π− (n = 1, 2, 3) cross sections, JHEP10, 220 (2019)
178 E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D17, 3090 (1978) [Erratum: Phys. Rev. D21, 313 (1980)]
https://doi.org/10.1103/PhysRevD.17.3090
179 E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D21, 203 (1980)
https://doi.org/10.1103/PhysRevD.21.203
180 B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett.35, 1616 (1975)
https://doi.org/10.1103/PhysRevLett.35.1616
181 U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett.35, 483 (1975)
https://doi.org/10.1103/PhysRevLett.35.483
182 M. E. Binkley, et al., J/ψ photoproduction from 60 GeV/c to 300 GeV/c, Phys. Rev. Lett.48, 73 (1982)
https://doi.org/10.1103/PhysRevLett.48.73
183 B. H. Denby, et al., Inelastic and elastic photoproduction of J/ψ(3097), Phys. Rev. Lett.52, 795 (1984)
https://doi.org/10.2172/1433892
184 P. L. Frabetti, et al., A measurement of elastic J/ψ photoproduction cross-section at Fermilab E687, Phys. Lett. B316, 197 (1993)
185 C. Adloff, et al., Elastic photoproduction of J/ψ and Y mesons at HERA, Phys. Lett. B483, 23 (2000)
186 S. Chekanov, et al., Exclusive photoproduction of J/ψ mesons at HERA, Eur. Phys. J. C24, 345 (2002)
https://doi.org/10.1007/s10052-002-0953-7
187 M. S. Atiya, et al., Evidence for the high-energy photoproduction of charmed mesons, Phys. Rev. Lett.43, 414 (1979)
https://doi.org/10.1103/PhysRevLett.43.414
188 A. R. Clark, et al., Cross-section measurements for charm production by muons and photons, Phys. Rev. Lett.45, 682 (1980)
https://doi.org/10.1103/PhysRevLett.45.682
189 J. J. Aubert, et al., Production of charmed particles in 250-GeV µ+-iron interactions, Nucl. Phys. B213, 31 (1983)
190 M. I. Adamovich, et al., Cross-sections and some features of charm photoproduction at γ energies of 20 GeV to 70 GeV, Phys. Lett. B187, 437 (1987)
191 O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016)
https://doi.org/10.1103/PhysRevD.94.074001
192 M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett.124(7), 072001 (2020)
https://doi.org/10.1103/PhysRevLett.124.072001
193 J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N∗ and Λ∗ resonances with hidden charm above 4 GeV, Phys. Rev. Lett.105, 232001 (2010)
https://doi.org/10.1103/PhysRevLett.105.232001
194 W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou,ΣcD¯ and ΛcD states in a chiral quark model, Phys. Rev. C84, 015203 (2011)
https://doi.org/10.1103/PhysRevC.84.015203
195 Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C36, 6 (2012)
https://doi.org/10.1088/1674-1137/36/1/002
196 J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C85, 044002 (2012)
https://doi.org/10.1103/PhysRevC.85.044002
197 C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D88, 056012 (2013)
https://doi.org/10.1103/PhysRevD.88.056012
198 T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016)
https://doi.org/10.1140/epja/i2016-16043-0
199 M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett.115(12), 122001 (2015)
https://doi.org/10.1103/PhysRevLett.115.122001
200 X. Cao and J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D100(5), 054033 (2019)
https://doi.org/10.1103/PhysRevD.100.054033
201 Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D95(11), 114017 (2017)
https://doi.org/10.1103/PhysRevD.95.114017
202 Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D100(5), 056005 (2019)
https://doi.org/10.1103/PhysRevD.100.056005
203 Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C80(4), 341 (2020)
https://doi.org/10.1140/epjc/s10052-020-7890-1
204 Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the γp→D¯*0Λc+ reaction near threshold, Chin. Phys. C40(12), 124104 (2016)
https://doi.org/10.1088/1674-1137/40/12/124104
205 J.-J. Wu, T. S. H. Lee, and B.-S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C100(3), 035206 (2019)
https://doi.org/10.1103/PhysRevC.100.035206
206 J. Breitweg, et al., Measurement of elastic Upsilon photoproduction at HERA, Phys. Lett. B437, 432 (1998)
https://doi.org/10.1007/s100520050124
207 S. Chekanov, et al., Exclusive photoproduction of upsilon mesons at HERA, Phys. Lett. B680, 4 (2009)
208 CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at SNN= 5.02 TeV (2016),
209 J. J. Aubert, et al., Observation of wrong sign trimuon events in 250-GeV muon–nucleon interactions, Phys. Lett. B106, 419 (1981)
210 C. Adloff, et al., Measurement of open beauty production at HERA, Phys. Lett. B467, 156 (1999) [Erratum: Phys. Lett. B518, 331 (2001)]
211 L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016)
https://doi.org/10.1140/epja/i2016-16158-2
212 S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B498, 23 (2001)
https://doi.org/10.1016/S0370-2693(00)01373-3
213 E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002)
https://doi.org/10.1140/epjc/s2002-01058-5
214 E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003)
https://doi.org/10.1103/PhysRevD.67.074023
215 Y. Xu, Y. Xie, R. Wang, and X. Chen, Estimation of Y(1S) production in ep process near threshold,Eur. Phys. J. C80(3), 283 (2020)
https://doi.org/10.1140/epjc/s10052-020-7845-6
216 F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D92(7), 071502 (2015)
https://doi.org/10.1103/PhysRevD.92.071502
217 X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B757m, 231 (2016)
https://doi.org/10.1016/j.physletb.2016.03.089
218 Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett.111(13), 132003 (2013)
https://doi.org/10.1103/PhysRevLett.111.132003
219 Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B725(1–3), 106 (2013)
https://doi.org/10.1016/j.physletb.2013.06.049
220 A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B772, 200 (2017)
https://doi.org/10.1016/j.physletb.2017.06.030
221 A. P. Szczepaniak, Triangle singularities and XYZ quarkonium peaks, Phys. Lett. B747, 410 (2015)
https://doi.org/10.1016/j.physletb.2015.06.029
222 M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J. Nieves, Zc(3900): What has been really seen? Phys. Lett. B755, 337 (2016)
https://doi.org/10.1016/j.physletb.2016.02.025
223 Q.-R. Gong, J.-L. Pang, Y.-F. Wang, and H.-Q. Zheng, The Zc(3900) peak does not come from the “triangle singularity”, Eur. Phys. J. C78(4), 276 (2018)
224 F.-K. Guo, Triangle singularities and charmonium-like XYZ states, Nucl. Phys. Rev.37(3), 406 (2020)
225 S. X. Nakamura and K. Tsushima, Zc(4430) and Zc(4200) as triangle singularities, Phys. Rev. D100(5), 051502 (2019)
https://doi.org/10.1103/PhysRevD.100.051502
226 S. X. Nakamura, Triangle singularities in B¯0→χc1K−π+ relevant to Z1(4050) and Z2(4250), Phys. Rev. D100(1), 011504 (2019)
https://doi.org/10.1103/PhysRevD.100.011504
227 C Adolph, et al., Search for exclusive photoproduction of Zc±(3900) at COMPASS, Phys. Lett. B742, 330 (2015)
228 X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D77, 094005 (2008)
https://doi.org/10.1103/PhysRevD.77.094005
229 J. He and X. Liu, Discovery potential for charmoniumlike state Y (3940) by the meson photoproduction, Phys. Rev. D80, 114007 (2009)
https://doi.org/10.1103/PhysRevD.80.114007
230 G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C83, 065203 (2011)
https://doi.org/10.1103/PhysRevC.83.065203
231 Q.-Y. Lin, X. Liu, and H.-S. Xu, Charged charmoniumlike state Zc(3900)±, Phys. Rev. D88, 114009 (2013)
https://doi.org/10.1103/PhysRevD.88.114009
232 Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D89(3), 034016 (2014)
https://doi.org/10.1103/PhysRevD.89.034016
233 Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G41(11), 115004 (2014)
https://doi.org/10.1088/0954-3899/41/11/115004
234 Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D92, 034022 (2015)
https://doi.org/10.1103/PhysRevD.92.034022
235 X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Zc+(4200), Phys. Rev. D92(9), 094017 (2015)
https://doi.org/10.1103/PhysRevD.92.094017
236 V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photonnucleon collisions, Phys. Rev. D92(3), 031502 (2015)
https://doi.org/10.1103/PhysRevD.92.031502
237 M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B752, 329 (2016)
https://doi.org/10.1016/j.physletb.2015.11.068
238 A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D94(3), 034002 (2016)
https://doi.org/10.1103/PhysRevD.94.034002
239 Z. E. Meziani, et al., A search for the LHCb charmed “Pentaquark” using photo-production of J/ψ at threshold in hall C at Jefferson Lab, 9 (2016)
240 S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)
241 E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance Pc+(4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A978, 201 (2018)
https://doi.org/10.1016/j.nuclphysa.2018.08.009
242 X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp→J/ψp reaction, Phys. Rev. D99(11), 114007 (2019)
243 V. P. Gonçalves and M. M. Jaime, Photoproduction of pentaquark states at the LHC, Phys. Lett. B805, 135447 (2020)
https://doi.org/10.1016/j.physletb.2020.135447
244 X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D101(3), 034032 (2020)
245 X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D101(7), 074010 (2020)
https://doi.org/10.1103/PhysRevD.101.074010
246 D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D100(3), 034019 (2019)
https://doi.org/10.1103/PhysRevD.100.034019
247 Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ+p channel in electron–proton collisions, arXiv: 2003.11729 [hep-ph] (2020)
248 E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020)
https://doi.org/10.1088/1674-1137/aba5f8
249 Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C44(8), 084102 (2020)
https://doi.org/10.1088/1674-1137/44/8/084102
250 M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron–hadron facilities: Exclusive processes, Phys. Rev. D102, 114010 (2020)
https://doi.org/10.1103/PhysRevD.102.114010
251 J.-J. Wu and B. S. Zou, Prediction of super-heavy N∗ and Λ∗ resonances with hidden beauty, Phys. Lett. B709, 70 (2012)
252 Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)
253 G. Yang, J. Ping, and J. Segovia, Hidden-bottom pentaquarks, Phys. Rev. D99(1), 014035 (2019)
https://doi.org/10.1103/PhysRevD.99.014035
254 J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc (4450) states, Phys. Lett. B789, 562 (2019)
255 H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D99(1), 014010 (2019)
https://doi.org/10.1103/PhysRevD.99.014010
256 H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C76(11), 624 (2016)
https://doi.org/10.1140/epjc/s10052-016-4476-z
257 C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C42(2), 023106 (2018)
https://doi.org/10.1088/1674-1137/42/2/023106
258 C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A49, 139 (2013)
https://doi.org/10.1140/epja/i2013-13139-y
259 R. Aaij, et al.(LHCb Collaboration), Study of the lineshape of the χc1(3872) state, Phys. Rev. D102, 092005
260 R. Aaij, et al.(LHCb Collaboration), Study of the ψ2(3823) and χc1(3872) states in B+→(Jψπ+π−)K+ decays, JHEP08, 123 (2020)
261 R. Aaij, et al., Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett.110, 222001 (2013)
262 S. K. Choi, et al., Observation of a narrow charmonium — like state in exclusive B±→K±π+π−J/ψ decays, Phys. Rev. Lett.91, 262001 (2003)
263 M. Ablikim, et al., Observation of a charged charmoniumlike structure in e+e−→π+π−J/ψ⁢  at⁢ s= 4.26GeV, Phys. Rev. Lett.110, 252001 (2013)
264 Z. Q. Liu, et al., Study of e+e−→π+π−J/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett.110, 252002 (2013) [Erratum: Phys. Rev. Lett.111, 019901 (2013)]
265 T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e−→ππJ/ψ⁢   at s= 4170 MeV, Phys. Lett. B727, 366 (2013)
266 V. M. Abazov, et al., Properties of Zc±(3900) produced in pp‾ collision, Phys. Rev. D100, 012005 (2019)
267 M. Ablikim, et al., Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett.119(7), 072001 (2017)
268 M. Ablikim, et al., Observation of Zc(3900)0 in e+e−→π0π0J/ψ, Phys. Rev. Lett.115(11), 112003 (2015)
269 M. Lomnitz and S. Klein, Exclusive vector meson production at an electron–ion collider, Phys. Rev. C99(1), 015203 (2019)
https://doi.org/10.1103/PhysRevC.99.015203
270 Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Leptoproduction of hidden-charm exotic hadrons (2020) (in preparation)
271 C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett.103, 162001 (2009)
https://doi.org/10.1103/PhysRevLett.103.162001
272 P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D83, 014019 (2011)
https://doi.org/10.1103/PhysRevD.83.014019
273 F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys.61, 354 (2014)
https://doi.org/10.1088/0253-6102/61/3/14
274 F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C74(9), 3063 (2014)
https://doi.org/10.1140/epjc/s10052-014-3063-4
275 M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017)
https://doi.org/10.1088/1674-1137/41/12/121001
276 T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP05, 026 (2006)
https://doi.org/10.1088/1126-6708/2006/05/026
277 M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett.122(24), 242001 (2019)
https://doi.org/10.1103/PhysRevLett.122.242001
278 M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett.78B, 443 (1978)
https://doi.org/10.1016/0370-2693(78)90481-1
279 C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst.58(1), 5 (2017)
https://doi.org/10.1007/s00601-016-1168-z
280 C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C78(2), 120 (2018)
https://doi.org/10.1140/epjc/s10052-018-5561-2
281 X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett.74, 1071 (1995)
https://doi.org/10.1103/PhysRevLett.74.1071
282 X.-D. Ji, Breakup of hadron masses and energymomentum tensor of QCD, Phys. Rev. D52, 271 (1995)
https://doi.org/10.1103/PhysRevD.52.271
283 Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett.121(21), 212001 (2018)
https://doi.org/10.1103/PhysRevLett.121.212001
284 Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D94(5), 054503 (2016)
285 A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett.116(25), 252001 (2016)
https://doi.org/10.1103/PhysRevLett.116.252001
286 G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93(9), 094504 (2016)
https://doi.org/10.1103/PhysRevD.93.094504
287 Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP12, 008 (2018)
https://doi.org/10.1007/JHEP12(2018)008
288 K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP01, 120 (2019)
https://doi.org/10.1007/JHEP01(2019)120
289 X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)
290 S. Rodini, A. Metz, and B. Pasquini, Mass sum rules of the electron in quantum electrodynamics, JHEP09, 067 (2020)
https://doi.org/10.1007/JHEP09(2020)067
291 A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, Phys. Rev. D102(11), 114042 (2021)
https://doi.org/10.1103/PhysRevD.102.114042
292 B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]
293 J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006
294 D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi130, 105 (1996)
295 D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C9,459 (1999)
296 R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D101(11), 114004 (2020)
https://doi.org/10.1103/PhysRevD.101.114004
297 J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A581, 397 (1995)
https://doi.org/10.1016/0375-9474(94)00428-P
298 T. Horn and C. D. Roberts, The pion: An enigma within the Standard Model, J. Phys. G43(7), 073001 (2016)
https://doi.org/10.1088/0954-3899/43/7/073001
299 J. Volmer, et al., Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett.86, 1713 (2001)
300 T. Horn, et al., Determination of the charged pion form factor at Q2= 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett.97, 192001 (2006)
301 V. Tadevosyan, et al., Determination of the pion charge form-factor for Q2=0.60−1.60 GeV2, Phys. Rev. C75, 055205 (2007)
302 T. Horn, et al., Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78, 058201 (2008)
303 G. M. Huber, et al., Charged pion form-factor between Q2= 0.60GeV2 and 2.45 GeV2(II): Determination of, and results for, the pion form-factor, Phys. Rev. C78, 045203 (2008)
304 H. P. Blok, et al., Charged pion form factor between Q2=0.60 and 2.45 GeV2(I): Measurements of the cross section for the 1H(e, e′π+)n reaction, Phys. Rev. C78, 045202 (2008)
305 J. Badier, et al., Measurement of the K−/π− structure function ratio using the Drell–Yan process, Phys. Lett.93B, 354 (1980)
306 J. Badier, et al., Experimental determination of the π meson structure functions by the Drell–Yan mechanism, Z. Phys. C18, 281 (1983)
https://doi.org/10.1007/BF01573728
307 B. Betev, et al., Observation of anomalous scaling violation in muon pair production by 194 GeV/cπ − tungsten interactions, Z. Phys. C28, 15 (1985)
https://doi.org/10.1007/BF01550244
308 S. Falciano, et al., Angular distributions of muon pairs produced by 194 GeV/c negative pions, Z. Phys. C31, 513 (1986)
https://doi.org/10.1007/BF01551072
309 M. Guanziroli, et al., Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C37, 545 (1988)
https://doi.org/10.1007/BF01549713
310 J. S. Conway, et al., Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D39, 92 (1989)
https://doi.org/10.1103/PhysRevD.39.92
311 J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett.13, 138 (1964)
312 A. C. Aguilar, et al., Pion and kaon structure at the electron–ion collider, Eur. Phys. J. A55(10), 190 (2019)
313 C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)
314 S. Chekanov, et al., Leading neutron production in e+p collisions at HERA, Nucl. Phys. B637, 3 (2002)
315 F. D. Aaron, et al., Measurement of leading neutron production in deep-inelastic scattering at HERA, Eur. Phys. J. C68, 381 (2010)
316 S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C97(1), 015203 (2018)
https://doi.org/10.1103/PhysRevC.97.015203
317 G. M. Huber, D. Gaskell, et al., Jefferson Lab Experiment E12-06-101 (2006)
318 T. Horn, G. M. Huber, et al., Scaling study of the L/Tseparated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)
319 D. Adikaram, et al., Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)
320 J. Annand, et al., Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2017)
321 D. Gaskell, et al., Jefferson Lab Experiment E12-19-006 (2019)
322 M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B400, 6 (1997)
https://doi.org/10.1016/S0370-2693(97)00354-7
323 M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C57, 1454 (1998)
https://doi.org/10.1103/PhysRevC.57.1454
324 T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e, e′π+)n, J. Korean Phys. Soc.67(7), 1089 (2015)
325 R. J. Perry, A. Kizilersü, and A. W. Thomas, An improved hadronic model for pion electroproduction, Phys. Lett. B807, 135581 (2020)
https://doi.org/10.1016/j.physletb.2020.135581
326 M. Gluck, E. Reya, and I. Schienbein, Pionic parton distributions revisited, Eur. Phys. J. C10, 313 (1999)
https://doi.org/10.1007/s100520050592
327 G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B87, 359 (1979)
https://doi.org/10.1016/0370-2693(79)90554-9
328 G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157 (1980)
https://doi.org/10.1103/PhysRevD.22.2157
329 S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)
330 V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15, 438 (1972) [Yad. Fiz.15, 781 (1972)]
331 G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126, 298 (1977)
https://doi.org/10.1016/0550-3213(77)90384-4
332 Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]
333 R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)
334 D. Drijard, et al., Observation of charmed d meson production in pp collisions, Phys. Lett. B81, 250 (1979)
335 K. L. Giboni, et al., Diffractive production of the charmed baryon Λc+ at the CERN ISR, Phys. Lett. B85, 437 (1979)
336 W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Λc+ in inclusive pp→Λ°π+π+π−+X and pp→(K−π+p) +X at s= 53-GeV and 62-GeV, Phys. Lett. B85, 443 (1979)
337 D. Drijard, et al., Charmed baryon production at the cern intersecting storage rings, Phys. Lett. B85, 452 (1979)
https://doi.org/10.1016/0370-2693(79)91294-2
338 H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys.114, 273 (1978)
https://doi.org/10.1016/0003-4916(78)90270-1
339 S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B93, 451 (1980)
https://doi.org/10.1016/0370-2693(80)90364-0
340 S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D23, 2745 (1981)
https://doi.org/10.1103/PhysRevD.23.2745
341 S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys.2015, 231547 (2015)
https://doi.org/10.1155/2015/231547
342 J. J. Aubert, et al., An experimental limit on the intrinsic charm component of the nucleon, Phys. Lett. B110, 73 (1982)
343 B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B461, 181 (1996)
https://doi.org/10.1016/0550-3213(95)00652-4
344 V. M. Abazov, et al., Measurement of γ+b+X and γ+c+Xproduction cross sections in pp‾ collisions at s= 1.96 TeV, Phys. Rev. Lett.102, 192002 (2009)
345 E. M Aitala, et al., Asymmetries in the production of Λc+ and Λc− baryons in 500-GeV/c π–nucleon interactions, Phys. Lett. B495, 42 (2000)
346 E. M. Aitala, et al., Differential cross-sections, charge production asymmetry, and spin density matrix elements for D∗±(2010) produced in 500-GeV/c π−–nucleon interactions, Phys. Lett. B539, 218 (2002)
347 C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G34, 845 (2007)
348 G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D100(5), 054022 (2019)
349 G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D89(7), 074020 (2014)
350 C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc,Ξbc ⁢ and⁢   Ξbb, Comput. Phys. Commun.177, 467 (2007)
351 C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.181, 1144 (2010)
352 X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun.184, 1070 (2013)
https://doi.org/10.1016/j.cpc.2012.10.022
353 X.-G. Wu, BCVEGPY and GENXICC for the hadronic production of the doubly heavy mesons and baryons, J. Phys. Conf. Ser.523, 012042 (2014)
https://doi.org/10.1088/1742-6596/523/1/012042
354 S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep.522, 239 (2013)
https://doi.org/10.1016/j.physrep.2012.10.001
355 C. Hadjidakis, et al., A fixed-target programme at the LHC: Physics case and projected performances for heavyion, hadron, spin and astroparticle studies, Phys. Rep.911, 1 (2018)
https://doi.org/10.1016/j.physrep.2021.01.002
356 J. P. Lansberg, et al., A fixed-target experiment at the LHC (AFTER@LHC): Luminosities, target polarisation and a selection of physics studies, PoS QNP2012, 049 (2012)
https://doi.org/10.22323/1.157.0049
357 J. P. Lansberg, et al., Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012: 547 (2013)
https://doi.org/10.22323/1.174.0547
358 J. P. Lansberg, et al., AFTER@LHC: A precision machine to study the interface between particle and nuclear physics, EPJ Web Conf.66, 11023 (2014)
https://doi.org/10.1051/epjconf/20146611023
359 G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D51, 1125 (1995)
https://doi.org/10.1103/PhysRevD.51.1125
360 R. Aaij, et al., Observation of the doubly charmed baryon Ξcc++, Phys. Rev. Lett.119(11), 112001 (2017)
361 R. Aaij, et al., Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron.63(2), 221062 (2020)
362 M. Mattson, et al., First observation of the doubly charmed baryon Ξcc+, Phys. Rev. Lett. 89, 112001 (2002)
363 A. Ocherashvili, et al., Confirmation of the double charm baryon Ξcc+(3520) via its decay to pD+K−, Phys. Lett. B628, 18 (2005)
364 H.-W. Lin, et al., Parton distributions and lattice QCD calculations: A community white paper, Prog. Part. Nucl. Phys.100, 107 (2018)
365 S. Aoki, et al., FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C80(2), 113 (2020)
https://doi.org/10.1140/epjc/s10052-019-7354-7
366 C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett.119(14), 142002 (2017)
https://doi.org/10.1103/PhysRevLett.119.142002
367 J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D98(7), 074505 (2018)
https://doi.org/10.1103/PhysRevD.98.074505
368 H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D98(9), 094512 (2018)
https://doi.org/10.1103/PhysRevD.98.094512
369 D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett.113(1), 012001 (2014)
https://doi.org/10.1103/PhysRevLett.113.012001
370 Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett.118(10), 102001 (2017)
https://doi.org/10.1103/PhysRevLett.118.102001
371 Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018: 017 (2019)
372 R. L. Jaffe and A. Manohar, The G(1) problem: fact and fantasy on the spin of the proton, Nucl. Phys. B337, 509 (1990)
https://doi.org/10.1016/0550-3213(90)90506-9
373 M. Deka, et al., Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D91(1), 014505 (2015)
https://doi.org/10.1103/PhysRevD.91.014505
374 C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D101(9), 094513 (2020)
https://doi.org/10.1103/PhysRevD.101.094513
375 M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018)
https://doi.org/10.22323/1.346.0047
376 M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe–Manohar orbital angular momentum, Phys. Rev. D95(9), 094505 (2017)
https://doi.org/10.1103/PhysRevD.95.094505
377 X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett.110, 262002 (2013)
https://doi.org/10.1103/PhysRevLett.110.262002
378 Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D98(7), 074021 (2018)
https://doi.org/10.1103/PhysRevD.98.074021
379 A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B767, 314 (2017)
https://doi.org/10.1016/j.physletb.2017.02.019
380 X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, largemomentum effective theory, arXiv: 2004.03543 (2020)
381 H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett.121(24), 242003 (2018)
https://doi.org/10.1103/PhysRevLett.121.242003
382 C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.121(11), 112001 (2018)
https://doi.org/10.1103/PhysRevLett.121.112001
383 C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D98(9), 091503 (2018)
https://doi.org/10.1103/PhysRevD.98.091503
384 J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D102(3), 034514 (2020)
https://doi.org/10.1103/PhysRevD.102.034514
385 J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Pion generalized parton distribution from lattice QCD, Nucl. Phys. B952, 114940 (2020)
https://doi.org/10.1016/j.nuclphysb.2020.114940
386 X. Ji, Y. Liu, and Y.-S. Liu, Transverse-momentumdependent PDFs from large-momentum effective theory, arXiv: 1911.03840 (2019)
387 P. Shanahan, M. Wagman, and Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD, Phys. Rev. D102, 014511
https://doi.org/10.1103/PhysRevD.102.014511
388 Q.-A. Zhang, et al., Lattice-QCD calculations of TMD soft function through large-momentum effective theory, arXi: 2005.14572, (2020)
https://doi.org/10.1103/PhysRevLett.125.192001
389 A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189(4), 483 (1987)
https://doi.org/10.1016/0370-2693(87)90664-2
390 W. Detmold, M. Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020)
https://doi.org/10.1103/PhysRevLett.126.202001
391 T. Yamazaki, Y. Kuramashi, and A. Ukawa, Helium nuclei in quenched lattice QCD, Phys. Rev. D81, 111504 (2010)
https://doi.org/10.1103/PhysRevD.81.111504
392 T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D99(1), 014514 (2019)
https://doi.org/10.1103/PhysRevD.99.014514
393 M. Luscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B354, 531 (1991)
https://doi.org/10.1016/0550-3213(91)90366-6
394 L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP07, 126 (2012)
https://doi.org/10.1007/JHEP07(2012)126
395 S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Zc+ channel using lattice QCD, Phys. Rev. D91(1), 014504 (2015)
396 Y. Chen, et al., Low-energy scattering of the (DD‾∗)± system and the resonance-like structure Zc(3900), Phys. Rev. D89(9), 094506 (2014)
397 Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett.117(24), 242001 (2016)
https://doi.org/10.1103/PhysRevLett.117.242001
398 M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C68, 015203 (2003)
https://doi.org/10.1103/PhysRevC.68.015203
399 P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D71, 054507 (2005)
https://doi.org/10.1103/PhysRevD.71.054507
400 M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc.842(1), 225 (2006)
https://doi.org/10.1063/1.2220232
401 P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B420, 267 (1998)
https://doi.org/10.1016/S0370-2693(97)01535-9
402 S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Ward–Green–Takahashi identities and the axial-vector vertex, Phys. Lett. B733, 202 (2014)
https://doi.org/10.1016/j.physletb.2014.04.041
403 D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations, Phys. Rev. D93(9), 096010 (2016)
https://doi.org/10.1103/PhysRevD.93.096010
404 C. D. Roberts, Three lectures on hadron physics, J. Phys. Conf. Ser.706(2), 022003 (2016)
https://doi.org/10.1088/1742-6596/706/2/022003
405 G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic threequark bound states, Prog. Part. Nucl. Phys.91, 1 (2016)
https://doi.org/10.1016/j.ppnp.2016.07.001
406 V. D. Burkert and C. D. Roberts, Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys.91(1), 011003 (2019)
https://doi.org/10.1103/RevModPhys.91.011003
407 S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)
408 Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C44(8), 083102 (2020)
https://doi.org/10.1088/1674-1137/44/8/083102
409 C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29–August 2, 2019 (2019)
410 A. V. Efremov and A. V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett.94B, 245 (1980)
https://doi.org/10.1016/0370-2693(80)90869-2
411 F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D96(3), 034024 (2017)
https://doi.org/10.1103/PhysRevD.96.034024
412 Z. F. Ezawa, Wide-angle scattering in softened field theory, Nuovo Cim. A23, 271 (1974)
https://doi.org/10.1007/BF02739483
413 G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x = 1, Phys. Rev. Lett.35, 1416 (1975)
https://doi.org/10.1103/PhysRevLett.35.1416
414 E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell–Yan process, Phys. Rev. Lett.42, 940 (1979)
https://doi.org/10.1103/PhysRevLett.42.940
415 R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys.82, 2991 (2010)
https://doi.org/10.1103/RevModPhys.82.2991
416 M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Valence quark distributions in the pion, Phys. Rev. C63, 025213 (2001)
https://doi.org/10.1103/PhysRevC.63.025213
417 K. Wijesooriya, P. E. Reimer, and R. J. Holt, The pion parton distribution function in the valence region, Phys. Rev. C72, 065203 (2005)
https://doi.org/10.1103/PhysRevC.72.065203
418 M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett.105, 252003 (2010)
https://doi.org/10.1103/PhysRevLett.105.252003
419 M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys.44(3), 031002 (2020)
https://doi.org/10.1088/1674-1137/44/3/031002
420 M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D101(5), 054014 (2020)
https://doi.org/10.1103/PhysRevD.101.054014
421 P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett.121(15), 152001 (2018)
https://doi.org/10.1103/PhysRevLett.121.152001
422 J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D100(3), 034505 (2019)
https://doi.org/10.1103/PhysRevD.100.034505
423 M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf= 2+ 1+ 1 dynamical quark flavors, Phys. Rev. D99(1), 014508 (2019)
424 N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019)
https://doi.org/10.22323/1.334.0109
425 R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D99(7), 074507 (2019)
https://doi.org/10.1103/PhysRevD.99.074507
426 L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett.110(13), 132001 (2013)
https://doi.org/10.1103/PhysRevLett.110.132001
427 P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments, Phys. Rev. D45, 2349 (1992)
https://doi.org/10.1103/PhysRevD.45.2349
428 B. Adams, et al., Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS, arXiv: 1808.00848V6 (2018)
429 W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pioninduced J/ψ production, Phys. Rev. D102, 054024
https://doi.org/10.1103/PhysRevD.102.054024
430 J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell–Yan processes, Phys. Lett. B361, 110 (1995)
https://doi.org/10.1016/0370-2693(95)01132-A
431 Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)
432 Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C80(11), 1064 (2020)
https://doi.org/10.1140/epjc/s10052-020-08578-4
433 X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang, Selected science opportunities for the EicC, Few Body Syst.61(4), 43 (2020)
https://doi.org/10.1007/s00601-020-01574-0
434 Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D98(5), 054019 (2018)
https://doi.org/10.1103/PhysRevD.98.054019
435 C. D. Roberts, R. J. Holt, and S. M. Schmidt, Nucleon spin structure at very high x, Phys. Lett. B727, 249 (2013)
https://doi.org/10.1016/j.physletb.2013.09.038
436 C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B741, 190 (2015)
https://doi.org/10.1016/j.physletb.2014.12.027
437 C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe–Salpeter wave functions to generalised parton distributions, Few Body Syst.57(9), 729 (2016)
https://doi.org/10.1007/s00601-016-1119-8
438 N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B780, 287 (2018)
https://doi.org/10.1016/j.physletb.2018.02.070
439 S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D97(9), 094014 (2018)
https://doi.org/10.1103/PhysRevD.97.094014
440 C. Shi and I. C. Cloët, Intrinsic transverse motion of the pion’s valence quarks, Phys. Rev. Lett.122(8), 082301 (2019)
https://doi.org/10.1103/PhysRevLett.122.082301
441 R. D. Field and R. P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136, 1 (1978)
https://doi.org/10.1016/0550-3213(78)90015-9
442 I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, et al., Polarized proton collider at RHIC, Nuclear Instruments and Methods in Physics Research Section A499(2–3), 392 (2003)
443 L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, et al., Electron cooling system in the booster synchrotron of the HIAF project, Nuclear Instruments and Methods in Physics Research Section A786, 91 (2015)
https://doi.org/10.1016/j.nima.2015.03.052
444 A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments81(2), 02B308 (2010)
https://doi.org/10.1063/1.3266140
445 E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A947, 162734 (2019)
https://doi.org/10.1016/j.nima.2019.162734
446 D. W. Higinbotham, Electron spin precession at CEBAF, AIP Conf. Proc.1149(1), 751 (2009)
https://doi.org/10.1063/1.3215753
447 U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA39(10), 859 (1949)
https://doi.org/10.1364/JOSA.39.000859
448 J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research204(2–3), 261 (1983)
https://doi.org/10.1016/0167-5087(83)90056-X
449 S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck, et al., Science requirements and conceptual design for a polarized medium energy electron–ion collider at Jefferson lab, arXiv: 1209.0757 (2012)
450 K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)
451 T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.135, 238 (2001)
https://doi.org/10.1016/S0010-4655(00)00236-8
452 N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)
453 M. Steigerwald, MeV Mott polarimetry at Jefferson lab, AIP Conf. Proc.570(1), 935 (2001)
https://doi.org/10.1063/1.1384229
454 M. Hauger, et al., A high precision polarimeter, Nucl. Instrum. Meth. A462, 382 (2001)
https://doi.org/10.1016/S0168-9002(01)00197-8
455 J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo, et al., A novel comparison of moller and compton electron–beam polarimeters, Phys. Lett. B766, 339 (2017)
https://doi.org/10.1016/j.physletb.2017.01.026
456 I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC‐pp RUN05 using CNI pC‐polarimeter, AIP Conf. Proc.915(1), 912 (2007)
https://doi.org/10.1063/1.2750924
457 I. G. Alekseev, A. Bravar, G. Bunce, et al., Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target, Phys. Rev. D79, 094014 (2009)
https://doi.org/10.1103/PhysRevD.79.094014
458 G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A831, 7 (2016)
https://doi.org/10.1016/j.nima.2016.04.109
459 R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A898, 90 (2018)
https://doi.org/10.1016/j.nima.2018.04.052
460 F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A805, 2 (2016), Special issue in memory of G. F. Knoll
https://doi.org/10.1016/j.nima.2015.07.060
461 W. Erni, et al., Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker, Eur. Phys. J. A49, 25 (2013)
462 M. Ablikim, et al., Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A614(3), 345 (2010)
463 Y. Van Haarlem, et al., The GlueX central drift chamber: design and performance, Nucl. Instrum. Meth. A622, 142 (2010)
https://doi.org/10.1016/j.nima.2010.06.272
464 J. Smyrski. Overview of the panda experiment, Physic Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)
https://doi.org/10.1016/j.phpro.2012.02.359
465 L. Barion, et al., RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm, JINST15(02), C02040 (2020)
https://doi.org/10.1088/1748-0221/15/02/C02040
466 I. Adam, et al., The dirc particle identification system for the BaBar experiment, Nuclear Instruments and Methods in Physics Research Section A538(1), 281 (2005)
https://doi.org/10.2172/827315
467 A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation15(04), C04054 (2020)
https://doi.org/10.1088/1748-0221/15/04/C04054
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed