Quantum deleting and cloning in a pseudo-unitary system
Yu-Cheng Chen1, Ming Gong2, Peng Xue3, Hai-Dong Yuan4, Cheng-Jie Zhang1,5()
1. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China 2. Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China 3. Beijing Computational Science Research Center, Beijing 100084, China 4. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China 5. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
In conventional quantum mechanics, quantum no-deleting and no-cloning theorems indicate that two different and nonorthogonal states cannot be perfectly and deterministically deleted and cloned, respectively. Here, we investigate the quantum deleting and cloning in a pseudo-unitary system. We first present a pseudo-Hermitian Hamiltonian with real eigenvalues in a two-qubit system. By using the pseudo-unitary operators generated from this pseudo-Hermitian Hamiltonian, we show that it is possible to delete and clone a class of two different and nonorthogonal states, and it can be generalized to arbitrary two different and nonorthogonal pure qubit states. Furthermore, state discrimination, which is strongly related to quantum no-cloning theorem, is also discussed. Last but not least, we simulate the pseudo-unitary operators in conventional quantum mechanics with post-selection, and obtain the success probability of simulations. Pseudo-unitary operators are implemented with a limited efficiency due to the post-selections. Thus, the success probabilities of deleting and cloning in the simulation by conventional quantum mechanics are less than unity, which maintain the quantum no-deleting and no-cloning theorems.
H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014) https://doi.org/10.1016/j.physrep.2014.06.004
L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998) https://doi.org/10.1103/PhysRevLett.80.4999
8
C. M. Bender and S. Boettcher, Real spectra in Non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998) https://doi.org/10.1103/PhysRevLett.80.5243
9
C. M. Bender, S. Boettcher, and P. N. Meisinger, PT symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999) https://doi.org/10.1063/1.532860
A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of PT-symmetric potential scattering in a planar slab waveguide, J. Phys. A 38(9), L171 (2005) https://doi.org/10.1088/0305-4470/38/9/L03
12
S. Klaiman, U. Günther, and N. Moiseyev, Visualization of branch points in PT-symmetric waveguides, Phys. Rev. Lett. 101(8), 080402 (2008) https://doi.org/10.1103/PhysRevLett.101.080402
13
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009) https://doi.org/10.1103/PhysRevLett.103.093902
14
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6(3), 192 (2010) https://doi.org/10.1038/nphys1515
15
L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013) https://doi.org/10.1038/nmat3495
16
L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal light propagation in a silicon photonic circuit, Science 333(6043), 729 (2011) https://doi.org/10.1126/science.1206038
17
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014) https://doi.org/10.1038/nphys2927
18
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014) https://doi.org/10.1038/nphoton.2014.133
19
Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011) https://doi.org/10.1103/PhysRevLett.106.093902
20
M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012) https://doi.org/10.1103/PhysRevLett.108.173901
21
M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Reversing the pump dependence of a laser at an exceptional point, Nat. Commun. 5(1), 4034 (2014) https://doi.org/10.1038/ncomms5034
22
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014) https://doi.org/10.1126/science.1258479
23
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time symmetric microring lasers, Science 346(6212), 975 (2014) https://doi.org/10.1126/science.1258480
24
A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity–time synthetic photonic lattices, Nature 488(7410), 167 (2012) https://doi.org/10.1038/nature11298
C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98(4), 040403 (2007) https://doi.org/10.1103/PhysRevLett.98.040403
27
C. M. Bender, D. C. Brody, J. Caldeira, U. Günther, B. K. Meister, and B. F. Samsonov, PT-symmetric quantum state discrimination, Phil. Trans. R. Soc. A 371(1989), 20120160 (2013) https://doi.org/10.1098/rsta.2012.0160
28
Y. C. Lee, M. H. Hsieh, S. T. Flammia, and R. K. Lee, Local PT symmetry violates the no-signaling principle, Phys. Rev. Lett. 112(13), 130404 (2014) https://doi.org/10.1103/PhysRevLett.112.130404
29
J. S. Tang, Y. T. Wang, S. Yu, D. Y. He, J. S. Xu, B. H. Liu, G. Chen, Y. N. Sun, K. Sun, Y. J. Han, C. F. Li, and G. C. Guo, Experimental investigation of the nosignalling principle in parity-time symmetric theory using an open quantum system, Nat. Photonics 10(10), 642 (2016) https://doi.org/10.1038/nphoton.2016.144
30
Q. Li, C. J. Zhang, Z. D. Cheng, W. Z. Liu, J. F. Wang, F. F. Yan, Z. H. Lin, Y. Xiao, K. Sun, Y. T. Wang, J. S. Tang, J. S. Xu, C. F. Li, and G. C. Guo, Experimental simulation of anti-parity–time symmetric Lorentz dynamics, Optica 6(1), 67 (2019) https://doi.org/10.1364/OPTICA.6.000067
31
X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B. C. Sanders, C. Zhang, and P. Xue, Experimental quantum cloning in a pseudo-unitary system, Phys. Rev. A 101, 010302(R) (2020) https://doi.org/10.1103/PhysRevA.101.010302
32
A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002) https://doi.org/10.1063/1.1418246
33
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002) https://doi.org/10.1063/1.1461427
34
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002) https://doi.org/10.1063/1.1489072
35
A. Mostafazadeh, Quantum Brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics, Phys. Rev. Lett. 99(13), 130502 (2007) https://doi.org/10.1103/PhysRevLett.99.130502
U. Günther and B. F. Samsonov, ü-symmetric brachistochrone problem, Lorentz boosts, and nonunitary operator equivalence classes, Phys. Rev. A 78(4), 042115 (2008) https://doi.org/10.1103/PhysRevA.78.042115