Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53503   https://doi.org/10.1007/s11467-021-1067-8
  本期目录
BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction
Yunliang Liu1, Peiji Deng1,6, Ruqiang Wu1, Ramadan A. Geioushy2, Yaxi Li1, Yixian Liu1(), Fengling Zhou3(), Haitao Li1,4(), Chenghua Sun5()
1. Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
2. Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R&D Institute (CMRDI), P.O. Box, 87 Helwan, 11421, Cairo, Egypt
3. College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
4. Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
5. Faculty of Science, Engineering & Technology, Swinburne University of Technology, Victoria 3122, Australia
6. Faculty of Engineering, The University of Sydney, Sydney, Australia
 全文: PDF(2595 KB)  
Abstract

The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.

Key wordsTiO2 nanotubes    BiVO4    interface    oxygen vacancy    NRR
收稿日期: 2020-11-26      出版日期: 2021-06-11
Corresponding Author(s): Yixian Liu,Fengling Zhou,Haitao Li,Chenghua Sun   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53503.
Yunliang Liu, Peiji Deng, Ruqiang Wu, Ramadan A. Geioushy, Yaxi Li, Yixian Liu, Fengling Zhou, Haitao Li, Chenghua Sun. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. , 2021, 16(5): 53503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1067-8
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53503
1 P. Bhattacharya,D. E. Prokopchuk, and M. T. Mock, Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia, Coord. Chem. Rev. 334, 67 (2017)
https://doi.org/10.1016/j.ccr.2016.07.005
2 J. R. Christianson,D. Zhu, R. J. Hamers, and J. R. Schmidt,Mechanism of N2 reduction to NH3 by aqueous solvated electrons, J. Phys. Chem. B 118(1), 195 (2014)
https://doi.org/10.1021/jp406535p
3 B. Qin, Y. Li,Q. Zhang,G. Yang,H. Liang, and F. Peng, Understanding of nitrogen fixation electro catalyzed by molybdenum–iron carbide through the experiment and theory, Nano Energy 68, 104374 (2020)
https://doi.org/10.1016/j.nanoen.2019.104374
4 W. Zhao, S. Dou,K. Zhang, L. Wu,Q. Wang,D. Shang, and Q. Zhong, Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOx, Chem. Eng. J. 364, 401 (2019)
https://doi.org/10.1016/j.cej.2019.01.166
5 J. Zhao,Q. Ouyang,Q. Chen, and H. Lin,Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection, Food Sci. Technol. Int. 19(4), 305 (2013)
https://doi.org/10.1177/1082013212452475
6 B. Cui, J. Zhang, S. Liu,X. Liu, W. Xiang, L. Liu,H. Xin,M. J. Lefler, and S. Licht, Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon, Green Chem. 19(1), 298 (2017)
https://doi.org/10.1039/C6GC02386J
7 W. Qiu, X. Y. Xie,J. Qiu,W. H. Fang,R. Liang,X. Ren, X. Ji,G. Cui, A. M. Asiri, G. Cui, B. Tang, and X. Sun,High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst, Nat. Commun. 9(1), 3485 (2018)
https://doi.org/10.1038/s41467-018-05758-5
8 Z. Cui, W. Du,C. Xiao,Q. Li,R. Sa,C. Sun, and Z. Ma,Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
https://doi.org/10.1007/s11467-020-0980-6
9 X. Chen,X. Zhao,Z. Kong, W. J. Ong, and N. Li,Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride, J. Mater. Chem. A 6(44), 21941 (2018)
https://doi.org/10.1039/C8TA06497K
10 Z. X. Xu,H. Song,X. Q. Deng,Y. Y. Zhang, M. Xue-Qin,S. Q. Tong, Z. X. He,Q. Wang, Y. W. Shao, and X. Hu,Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material, J. Hazard. Mater. 379, 120810 (2019)
https://doi.org/10.1016/j.jhazmat.2019.120810
11 C. Liu,Q. Li,C. Wu,J. Zhang,Y. Jin, D. R. MacFarlane, and C. Sun,Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
https://doi.org/10.1021/jacs.8b13165
12 Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, and C. Sun,Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction, J. Mater. Chem. A 7(37), 21507 (2019)
https://doi.org/10.1039/C9TA04650J
13 Q. Li,S. Qiu, L. He, X. Zhang, and C. Sun, Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst, Phys. Chem. Chem. Phys. 20(36), 23338 (2018)
https://doi.org/10.1039/C8CP04474K
14 H. Cheng,L. X. Ding, G. F. Chen,L. Zhang, J. Xue, and H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, Adv. Mater. 30(46), 1803694 (2018)
https://doi.org/10.1002/adma.201803694
15 X. Ren,J. Zhao,Q. Wei,Y. Ma, H. Guo,Q. Liu, Y. Wang,G. Cui, A. M. Asiri, B. Li, B. Tang, and X. Sun,High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod, ACS Cent. Sci. 5(1), 116 (2019)
https://doi.org/10.1021/acscentsci.8b00734
16 Z. Sun,R. Huo, C. Choi, S. Hong,T. S. Wu,J. Qiu, C. Yan,Z. Han, Y. Liu,Y. L. Soo, and Y. Jung,Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure, Nano Energy 62, 869 (2019)
https://doi.org/10.1016/j.nanoen.2019.06.019
17 P. Chen,N. Zhang, S. Wang,T. Zhou,Y. Tong,C. Ao, W. Yan,L. Zhang,W. Chu,C. Wu, and Y. Xie,Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis, Proc. Natl. Acad. Sci. USA 116(14), 6635 (2019)
https://doi.org/10.1073/pnas.1817881116
18 M. Kitano, Y. Inoue, Y. Yamazaki,F. Hayashi,S. Kanbara,S. Matsuishi,T. Yokoyama, S. W. Kim,M. Hara, and H. Hosono,Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4(11), 934 (2012)
https://doi.org/10.1038/nchem.1476
19 F. Zhou,L. M. Azofra, M. Ali,M. Kar, A. N. Simonov,C. McDonnell-Worth, C. Sun,X. Zhang, and D. R. Mac- Farlane,Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids, Energy Environ. Sci. 10(12), 2516 (2017)
https://doi.org/10.1039/C7EE02716H
20 D. Wang,L. M. Azofra,M. Harb,L. Cavallo,X. Zhang, B. H. R. Suryanto, and D. R. MacFarlane, Energyefficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions, Chem.Sus.Chem. 11(19), 3416 (2018)
https://doi.org/10.1002/cssc.201801632
21 A. R. Singh,B. A. Rohr,J. A. Schwalbe,M. Cargnello,K. Chan, T. F. Jaramillo,I. Chorkendorff, and J. K. Nørskov,Electrochemical ammonia synthesis — The selectivity challenge, ACS Catal. 7(1), 706 (2017)
https://doi.org/10.1021/acscatal.6b03035
22 S. Z. Andersen,V. Čolić,S. Yang,J. A. Schwalbe,A. C. Nielander,J. M. McEnaney,K. Enemark-Rasmussen,J. G. Baker,A. R. Singh,B. A. Rohr,M. J. Statt,S. J. Blair, S. Mezzavilla,J. Kibsgaard,P. C. K. Vesborg,M. Cargnello,S. F. Bent,T. F. Jaramillo,I. E. L. Stephens,J. K. Nørskov, and I. Chorkendorff,A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature 570(7762), 504 (2019)
https://doi.org/10.1038/s41586-019-1260-x
23 J. Kibsgaard,J. K. Nørskov, and I. Chorkendorff,The Difficulty of Proving Electrochemical Ammonia Synthesis, ACS Energy Lett. 4(12), 2986 (2019)
https://doi.org/10.1021/acsenergylett.9b02286
24 T. Chen,S. Liu,H. Ying,Z. Li, and J. Hao,Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction, Chem. Asian J. 15(7), 1081 (2020)
https://doi.org/10.1002/asia.202000008
25 H. Xie,Q. Geng, X. Zhu, Y. Luo, L. Chang,X. Niu,X. Shi,A. M. Asiri,S. Gao, Z. Wang, and X. Sun,PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions, J. Mater. Chem. A 7(43), 24760 (2019)
https://doi.org/10.1039/C9TA09910G
26 Z. Zhang,K. Yao,L. Cong,Z. Yu,L. Qu, and W. Huang,Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction, Catal. Sci. Technol. 10(5), 1336 (2020)
https://doi.org/10.1039/C9CY02500F
27 X. Zhao,Z. Yang,A. V. Kuklin, G. V. Baryshnikov,H. Ågren, W. Wang, X. Zhou, and H. Zhang,Potassium ions promote electrochemical nitrogen reduction on nano-Au catalysts triggered by bifunctional boron supramolecular assembly, J. Mater. Chem. A 8(26), 13086 (2020)
https://doi.org/10.1039/D0TA04580B
28 D. Deng,K. S. Novoselov,Q. Fu,N. Zheng,Z. Tian, and X. Bao,Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
https://doi.org/10.1038/nnano.2015.340
29 D. Gao,Y. Zhang,Z. Zhou,F. Cai, X. Zhao, W. Huang,Y. Li,J. Zhu,P. Liu,F. Yang, G. Wang, and X. Bao,Enhancing CO2 electroreduction with the metal–oxide interface, J. Am. Chem. Soc. 139(16), 5652 (2017)
https://doi.org/10.1021/jacs.7b00102
30 Y. Guo,J. Zou,X. Shi, P. Rukundo, and Z. Wang, A Ni/CeO2–CDC-SiC catalyst with improved Coke resistance in CO2 reforming of methane, ACS Sustain. Chem. & Eng. 5(3), 2330 (2017)
https://doi.org/10.1021/acssuschemeng.6b02661
31 S. Xie, Y. Liu,J. Deng,J. Yang, X. Zhao,Z. Han, K. Zhang, Y. Lu,F. Liu, and H. Dai, Carbon monoxide oxidation over rGO-mediated gold/cobalt oxide catalysts with strong metal–support interaction, ACS Appl. Mater. Interfaces 12(28), 31467 (2020)
https://doi.org/10.1021/acsami.0c07754
32 H. C. Song, G. R. Lee,K. Jeon, H. Lee, S. W. Lee, Y. S. Jung, and J. Y . Park,Engineering nanoscale interfaces of metal/oxide nanowires to control catalytic activity, ACS Nano 14(7), 8335 (2020)
https://doi.org/10.1021/acsnano.0c02347
33 J. Lv,S. Wu,Z. Tian,Y. Ye,J. Liu, and C. Liang, Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction, J. Mater. Chem. A 7(20), 12627 (2019)
https://doi.org/10.1039/C9TA02045D
34 B. Xu,L. Xia,F. Zhou, R. Zhao,H. Chen,T. Wang,Q. Zhou, Q. Liu,G. Cui,X. Xiong, F. Gong, and X. Sun,Enhancing Electrocatalytic, N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies, ACS Sustain. Chem. & Eng. 7(3), 2889 (2019)
https://doi.org/10.1021/acssuschemeng.8b05007
35 W. Fu, P. Zhuang,M. OliverLam Chee, P. Dong, M. Ye, and J. Shen, Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions, ACS Sustain. Chem. & Eng. 7(10), 9622 (2019)
https://doi.org/10.1021/acssuschemeng.9b01178
36 Y. Tong,H. Guo,D. Liu,X. Yan,P. Su,J. Liang,S. Zhou, J. Liu,G. Q. Lu, and S. X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction, Angew. Chem. Int. Ed. 59(19), 7356 (2020)
https://doi.org/10.1002/anie.202002029
37 T. Wu,X. Zhu,Z. Xing,S. Mou,C. Li,Y. Qiao,Q. Liu,Y. Luo,X. Shi,Y. Zhang, and X. Sun,Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping, Angew. Chem. Int. Ed. 58(51), 18449 (2019)
https://doi.org/10.1002/anie.201911153
38 T. Wu, W. Kong,Y. Zhang, Z. Xing,J. Zhao,T. Wang,X. Shi,Y. Luo, and X. Sun, Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping, Small Methods 3(11), 1900356 (2019)
https://doi.org/10.1002/smtd.201900356
39 S. Cheng, Y. J. Gao, Y. L. Yan,X. Gao,S. H. Zhang,G. L. Zhuang,S. W. Deng,Z. Z. Wei, X. Zhong, and J. G. Wang, Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2, J. Energ. Chem. 39, 144 (2019)
https://doi.org/10.1016/j.jechem.2019.01.020
40 Z. Han, C. Choi, S. Hong,T. S. Wu,Y. L. Soo,Y. Jung,J. Qiu, and Z. Sun,Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction, Appl. Catal. B 257, 117896 (2019)
https://doi.org/10.1016/j.apcatb.2019.117896
41 B. Li,X. Zhu,J. Wang,R. Xing,Q. Liu,X. Shi,Y. Luo,S. Liu,X. Niu, and X. Sun,Ti3+ self-doped TiO2−x nanowires for efficient electrocatalytic N2 reduction to NH3, Chem. Commun. (Camb.) 56(7), 1074 (2020)
https://doi.org/10.1039/C9CC08971C
42 Y. T. Liu,X. Chen,J. Yu, and B. Ding,Carbonnanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction, Angew. Chem. Int. Ed. 58(52), 18903 (2019)
https://doi.org/10.1002/anie.201912733
43 M. M. Shi,D. Bao,B. R. Wulan,Y. H. Li,Y. F. Zhang,J. M. Yan, and Q. Jiang,Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions, Adv. Mater. 29(17), 1606550 (2017)
https://doi.org/10.1002/adma.201606550
44 J. Zhang,Y. Tian,T. Zhang,Z. Li,X. She, Y. Wu,Y. Wang, and J. Wu,Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis, Chem. Cat. Chem. 12(10), 2760 (2020)
https://doi.org/10.1002/cctc.202000006
45 P. Zhao,L. Zhang,J. Song,S. Wen, and Z. Cheng, Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction, Appl. Surf. Sci. 523, 146517 (2020)
https://doi.org/10.1016/j.apsusc.2020.146517
46 Q. Hao,C. Liu,G. Jia,Y. Wang,H. Arandiyan,W. Wei, and B. J. Ni,Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects, Mater. Horiz. 7(4), 1014 (2020)
https://doi.org/10.1039/C9MH01668F
47 L. Li,C. Tang,B. Xia,H. Jin,Y. Zheng, and S. Z. Qiao,Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction, ACS Catal. 9(4), 2902 (2019)
https://doi.org/10.1021/acscatal.9b00366
48 J. M. Wu,Y. Chen,L. Pan,P. Wang,Y. Cui,D. Kong,L. Wang,X. Zhang, and J. J. Zou, Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications, Appl. Catal. B 221, 187 (2018)
https://doi.org/10.1016/j.apcatb.2017.09.031
49 J. X. Yao,D. Bao,Q. Zhang,M. M. Shi, Y. Wang,R. Gao,J. M. Yan, and Q. Jiang, Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions, Small Methods 3(6), 1800333 (2019)
https://doi.org/10.1002/smtd.201800333
50 C. Ling,Y. Zhang,Q. Li,X. Bai,L. Shi, and J. Wang,New mechanism for N2 reduction: The essential role of surface hydrogenation, J. Am. Chem. Soc. 141(45), 18264 (2019)
https://doi.org/10.1021/jacs.9b09232
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed