Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 52501   https://doi.org/10.1007/s11467-021-1069-6
  本期目录
Rydberg quantum computation with nuclear spins in two-electron neutral atoms
Xiao-Feng Shi()
School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
 全文: PDF(861 KB)  
Abstract

Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.

Key wordsalkaline-earth atom    Rydberg state    quantum computation    neutral atom
收稿日期: 2020-12-25      出版日期: 2021-04-26
Corresponding Author(s): Xiao-Feng Shi   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 52501.
Xiao-Feng Shi. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys. , 2021, 16(5): 52501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1069-6
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/52501
1 M. A. Nielsen and I. L. Chuang, Quantum Computa-tion and Quantum Information, Cambridge University Press, Cambridge, 2000
2 T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature(London) 464, 45 (2010)
https://doi.org/10.1038/nature08812
3 R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008 (2008)
https://doi.org/10.1038/nature07125
4 J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58, 42 (2005)
https://doi.org/10.1063/1.2155757
5 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011)
https://doi.org/10.1038/nature10122
6 D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, Quantum Spintronics: Engineering and manipulating atom-like spins in semiconductors, Science 339, 1174 (2013)
https://doi.org/10.1126/science.1231364
7 M. H. Devoret and R. J. Schoelkopf, Superconductingcircuits for quantum information: An outlook, Science 339, 1169 (2013)
https://doi.org/10.1126/science.1231930
8 D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85, 2208 (2000)
https://doi.org/10.1103/PhysRevLett.85.2208
9 M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87, 037901 (2001)
https://doi.org/10.1103/PhysRevLett.87.037901
10 M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)
https://doi.org/10.1103/RevModPhys.82.2313
11 M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J.Phys. B 49, 202001 (2016)
https://doi.org/10.1088/0953-4075/49/20/202001
12 D. S. Weiss and M. Saffman, Quantum computing withneutral atoms, Phys. Today 70, 44 (2017)
https://doi.org/10.1063/PT.3.3626
13 C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B: At. Mol.Opt. Phys. 53, 012002 (2020)
https://doi.org/10.1088/1361-6455/ab52ef
14 T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104, 010502 (2010)
https://doi.org/10.1103/PhysRevLett.104.010502
15 L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104, 010503 (2010)
https://doi.org/10.1103/PhysRevLett.104.010503
16 X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82, 030306(R) (2010)
https://doi.org/10.1103/PhysRevA.82.030306
17 K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array of neutral-atom qubits, Phys.Rev. A 92, 022336 (2015)
https://doi.org/10.1103/PhysRevA.92.022336
18 Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nat. Phys. 12, 71(2016)
https://doi.org/10.1038/nphys3487
19 Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade, Phys. Rev. Lett. 119, 160502 (2017)
https://doi.org/10.1103/PhysRevLett.119.160502
20 H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg atom qubits, Phys. Rev. Lett. 121, 123603 (2018)
https://doi.org/10.1103/PhysRevLett.121.123603
21 C. J. Picken, R. Legaie, K. McDonnell, and J. D. Pritchard, Entanglement of neutral-atom qubits with long ground-Rydberg coherence times, Quant. Sci. Technol. 4, 015011 (2019)
https://doi.org/10.1088/2058-9565/aaf019
22 H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of high-fidelity multi-qubit gates with neutral atoms, Phys. Rev. Lett. 123, 170503 (2019)
https://doi.org/10.1103/PhysRevLett.123.170503
23 T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123, 230501 (2019)
https://doi.org/10.1103/PhysRevLett.123.230501
24 H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124, 33603 (2019)
https://doi.org/10.1103/PhysRevLett.124.033603
25 I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020)
https://doi.org/10.1038/s41567-020-0903-z
26 D. Crow, R. Joynt, and M. Saffman, Improved error thresholds for measurement-free error correction, Phys. Rev. Lett. 117, 130503 (2016)
https://doi.org/10.1103/PhysRevLett.117.130503
27 R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, An ytterbium quantum gas microscope with narrow-line laser cooling, New J. Phys. 18, 023016 (2016)
https://doi.org/10.1088/1367-2630/18/2/023016
28 S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson, Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array, Phys. Rev. Lett. 122, 143002 (2019)
https://doi.org/10.1103/PhysRevLett.122.143002
29 A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, Alkaline-earth atoms in optical tweezers, Phys. Rev. X 8, 41055 (2018)
https://doi.org/10.1103/PhysRevX.8.041055
30 J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-times repeated imaging of strontium atoms in clockmagic tweezer arrays, Phys. Rev. Lett. 122, 173201 (2019)
https://doi.org/10.1103/PhysRevLett.122.173201
31 M. A. Norcia, A. W. Young, and A. M. Kaufman, Microscopic control and detection of ultracold strontium in optical-tweezer arrays, Phys. Rev. X 8, 041054 (2018)
https://doi.org/10.1103/PhysRevX.8.041054
32 I. Reichenbach and I. H. Deutsch, Sideband cooling while preserving coherences in the nuclear spin state in group- II-like atoms, Phys. Rev. Lett. 99, 123001 (2007)
https://doi.org/10.1103/PhysRevLett.99.123001
33 J. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. Burgers, and J. Thompson, Trapped arrays of alkaline earth Rydberg atoms in optical tweezers, arXiv: 1912.08754 [quant-ph] (2019)
34 X.-F. Shi, Rydberg quantum gates free from blockade error, Phys. Rev. Appl. 7, 064017 (2017)
https://doi.org/10.1103/PhysRevApplied.7.064017
35 K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998)
https://doi.org/10.1103/RevModPhys.70.1003
36 P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79, 53 (2007)
https://doi.org/10.1103/RevModPhys.79.53
37 N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89, 015006 (2017)
https://doi.org/10.1103/RevModPhys.89.015006
38 D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100, 170504 (2008)
https://doi.org/10.1103/PhysRevLett.100.170504
39 M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, Mesoscopic Rydberg gate based on electromagnetically induced transparency, Phys. Rev. Lett.102, 170502 (2009)
https://doi.org/10.1103/PhysRevLett.102.170502
40 M. H. Goerz, T. Calarco, and C. P. Koch, The quantumspeed limit of optimal controlled phase gates for trappedneutral atoms, J. Phys. B44 (2011)
https://doi.org/10.1088/0953-4075/44/15/154011
41 I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. MacCormick, and S. Bergamini, Deterministic single-atom excitation via adiabatic passage and Rydberg blockade, Phy. Rev. A 84, 023413 (2011)
https://doi.org/10.1103/PhysRevA.84.023413
42 M. M. Müller, H. R. Haakh, T. Calarco, C. P. Koch, and C. Henkel, Prospects for fast Rydberg gates on anatom chip, Quant. Inf. Proc. 10, 771 (2011)
https://doi.org/10.1007/s11128-011-0296-0
43 T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann, A. J. Landahl, and I. H. Deutsch, Adiabatic quantum computation with Rydberg-dressed atoms, Phy. Rev. A 87, 052314 (2013)
https://doi.org/10.1103/PhysRevA.87.052314
44 D. Petrosyan and K. Mølmer, Stimulated adiabaticpassage in a dissipative ensemble ofatoms with strong Rydberg-state interactions, Phys. Rev. A 87, 033416 (2013)
https://doi.org/10.1103/PhysRevA.87.033416
45 I. I. Beterov, M. Saffman, E. a. Yakshina, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, Quantum gates in mesoscopic atomic ensemblesbased on adiabatic passage and Rydberg blockade, Phys. Rev. A 88, 010303(R) (2013)
https://doi.org/10.1103/PhysRevA.88.010303
46 M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89, 032334 (2014)
https://doi.org/10.1103/PhysRevA.89.032334
47 M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch, and K. B. Whaley, Robustness of high-fidelity Rydberg gates with single-site addressability, Phys. Rev. A 90, 032329 (2014)
https://doi.org/10.1103/PhysRevA.90.032329
48 I. I. Beterov, M. Saffman, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. W. Mansell, C. Maccormick, S. Bergamini, and M. P. Fedoruk, Coherent control of mesoscopic atomic ensembles for quantum information, Laser Phys. 24, 074013 (2014)
https://doi.org/10.1088/1054-660X/24/7/074013
49 T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logicin neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91, 012337 (2015)
https://doi.org/10.1103/PhysRevA.91.012337
50 I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, G. N. Hamzina, and I. I. Ryabtsev, Simulated quantum process tomography of quantum gates with Rydberg superatoms, J. Phys. B 49, 114007 (2016)
https://doi.org/10.1088/0953-4075/49/11/114007
51 L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, High-fidelity Rydberg-blockade entangling gate usingshaped, analytic pulses, Phys. Rev. A 94, 032306 (2016)
https://doi.org/10.1103/PhysRevA.94.032306
52 H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phy. Rev. A 96, 022321 (2017)
https://doi.org/10.1103/PhysRevA.96.022321
53 D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A 96, 042306 (2017)
https://doi.org/10.1103/PhysRevA.96.042306
54 Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97, 042336 (2018)
https://doi.org/10.1103/PhysRevA.97.042336
55 A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. 16Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science 365, 570 (2019)
https://doi.org/10.1126/science.aax9743
56 K.-Y. Liao, X.-H. Lu, Z. Li, and Y.-X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801 (2019)
https://doi.org/10.1364/OL.44.004801
57 Y. Sun, P. Xu, P.-X. Chen, and L. Liu, Controlled phase gate protocol for neutral atoms via off-resonant, Phys. Rev. Appl. 13, 024059 (2020)
https://doi.org/10.1103/PhysRevApplied.13.024059
58 X.-F. Shi, Single-site Rydberg addressing in 3D atomicarrays for quantum computing with neutral atoms, J. Phys. B 53, 054002 (2020)
https://doi.org/10.1088/1361-6455/ab5f79
59 A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Molmer–Sorenson gate for neutralatoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101, 030301(R) (2020)
https://doi.org/10.1103/PhysRevA.101.030301
60 I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, M. Saffman, and S. Bergamini, Application of adiabatic passage in Rydberg atomic ensembles for quantum information processing, J. Phys. B 53, 182001 (2020)
https://doi.org/10.1088/1361-6455/ab8719
61 M. Saffman, I. I. Beterov, A. Dalal, E. J. Paez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses control target, Phys. Rev. A 101, 62309 (2020)
https://doi.org/10.1103/PhysRevA.101.062309
62 Y.-H. Kang, Z.-C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102, 022617 (2020)
https://doi.org/10.1103/PhysRevA.102.022617
63 C.-Y. Guo, L. L. Yan, S. Zhang, S.-L. Su, and W. Li, Optimized geometric quantum computation with mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102, 042607 (2020)
https://doi.org/10.1103/PhysRevA.102.042607
64 M. Khazali and K. Molmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10, 21054 (2020)
https://doi.org/10.1103/PhysRevX.10.021054
65 A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, Two-atom Rydberg blockade using direct 6S to nP excitation. Phys. Rev. A 89, 033416 (2014)
https://doi.org/10.1103/PhysRevA.89.033416
66 R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J. M. Raimond, S. Gleyzes, and M. Brune, Preparation of longlived, non-autoionizing circular Rydberg states of strontium, Phys. Rev. Lett. 125, 263001 (2020)
https://doi.org/10.1103/PhysRevLett.125.263001
67 D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett. 82, 1975 (1999)
https://doi.org/10.1103/PhysRevLett.82.1975
68 T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps, Phys. Rev. A 61, 022304 (2000)
https://doi.org/10.1103/PhysRevA.61.022304
69 D. Hayes, P. S. Julienne, and I. H. Deutsch, Quantum logic via the exchange blockade in ultracold collisions, Phys. Rev. Lett. 98, 070501 (2007)
https://doi.org/10.1103/PhysRevLett.98.070501
70 J. P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, and O. Painter, Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics, Phys. Rev. Appl. 11, 034044 (2019)
https://doi.org/10.1103/PhysRevApplied.11.034044
71 A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum computing with alkaline-earth-metal atoms, Phys. Rev. Lett. 101, 170504 (2008)
https://doi.org/10.1103/PhysRevLett.101.170504
72 G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spinexchange dynamics, Phys. Rev. Lett. 113, 120402 (2014)
https://doi.org/10.1103/PhysRevLett.113.120402
73 F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10, 779 (2014)
https://doi.org/10.1038/nphys3061
74 A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, Entangling two transportable neutral atoms via local spin exchange, Nature 527, 208 (2015)
https://doi.org/10.1038/nature16073
75 A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, Alkaline earth-metal atoms as few-qubit quantum registers, Phys. Rev. Lett. 102, 110503 (2009)
https://doi.org/10.1103/PhysRevLett.102.110503
76 A. J. Daley, J. Ye, and P. Zoller, State-dependent lattices for quantum computing with alkaline-earth-metal atoms, Eur. Phys. J. D 65, 207 (2011)
https://doi.org/10.1140/epjd/e2011-20095-2
77 A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quant. Inf. Proc. 10, 865 (2011)
https://doi.org/10.1007/s11128-011-0293-3
78 G. Pagano, F. Scazza, and M. FossFeig, Fast and scalable quantum information processing with two electron atoms in optical tweezer arrays, Adv. Quant. Technol. 2, 1970021 (2019)
https://doi.org/10.1002/qute.201800067
79 J. H. M. Jensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson, Time-optimal control of collisional SWAP gates in ultracold atomic systems, Phys. Rev. A 100, 052314 (2019)
https://doi.org/10.1103/PhysRevA.100.052314
80 R. Stock, N. S. Babcock, M. G. Raizen, and B. C. Sanders, Entanglement of group-II-like atoms with fast measurement for quantum information processing, Phys. Rev. 78, 022301 (2008)
https://doi.org/10.1103/PhysRevA.78.022301
81 M. Saffman and T. G. Walker, Analysis of a quantum logic device based on dipole-dipole interactions of opticallytrapped Rydberg atoms, Phys. Rev. A 72, 022347(2005)
https://doi.org/10.1103/PhysRevA.72.022347
82 M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower, and T. G. Walker, Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms, J. Phys.: Conf. Ser. 264, 012023 (2011)
https://doi.org/10.1088/1742-6596/264/1/012023
83 S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility of an optical clock using the 61S0 → 63Po0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A 69, 021403(R) (2004)
https://doi.org/10.1103/PhysRevA.69.021403
84 B. Budick and J. Snir, Hyperfine structure of the 6s6p1P1 level of the stable ytterbium isotopes, Phys. Rev. 178, 18 (1969)
https://doi.org/10.1103/PhysRev.178.18
85 R. W. Berends and L. Maleki, Hyperfine structure andisotope shifts of transitions in neutral and singly ionized ytterbium, J. Opt. Soc. Am. B 9, 332 (1992)
https://doi.org/10.1364/JOSAB.9.000332
86 K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, Isotopeshifts and hyperfine splittings of the 3988-nm Yb I line, J. Opt. Soc. Am. B 10, 789 (1993)
https://doi.org/10.1364/JOSAB.10.000789
87 R. Zinkstok, E. J. Van Duijn, S. Witte, and W. Hogervorst, Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation, J. Phys. B 35, 2693 (2002)
https://doi.org/10.1088/0953-4075/35/12/305
88 P. E. Atkinson, J. S. Schelfhout, and J. J. McFerran, Hyperfine constants and line separationsfor the 1S0 → 3P1 intercombination linein neutral ytterbium with sub- Doppler resolution, Phys. Rev. A 100, 042505 (2019)
https://doi.org/10.1103/PhysRevA.100.042505
89 A.-M. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4-nm 6s–6p1/2 resonance line of singly ionized ytterbium, Phys. Rev. A 49, 3351 (1994)
https://doi.org/10.1103/PhysRevA.49.3351
90 K. B. Blagoev and V. A. Komarovskii, Lifetimes of levels of neutral and singly ionized lanthanide atoms, At. Data Nucl. Data Tables 56, 1 (1994)
https://doi.org/10.1006/adnd.1994.1001
91 M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A76(2007)
https://doi.org/10.1103/PhysRevA.76.022510
92 B. Budick and J. Snir, Hyperfine-structure anomalies of stable ytterbium isotopes, Phys. Rev. A 1, 545 (1970)
https://doi.org/10.1103/PhysRevA.1.545
93 K. Pandey, A. K. Singh, P. V. Kumar, M. V. Suryanarayana, and V. Natarajan, Isotope shifts and hyperfine structure in the 555.8-nm 1S0 → 3P1 line of Yb, Phys. Rev. A 80, 022518 (2009)
https://doi.org/10.1103/PhysRevA.80.022518
94 H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Isolated core excitation of high-orbital quantum-number Rydberg states of ytterbium, Phys. Rev. A 103, 022806 (2021)
https://doi.org/10.1103/PhysRevA.103.022806
95 G. Higgins, W. Li, F. Pokorny, C. Zhang, F. Kress, C. Maier, J. Haag, Q. Bodart, I. Lesanovsky, and M. Hennrich, A single strontium Rydberg ion confinedin a Paul trap, Phys. Rev. X 7, 021038 (2017)
https://doi.org/10.1103/PhysRevX.7.021038
96 G. Higgins, F. Pokorny, C. Zhang, Q. Bodart, and M. Hennrich, Coherent control of a single trapped Rydbergion, Phys. Rev. Lett. 119, 220501 (2017)
https://doi.org/10.1103/PhysRevLett.119.220501
97 C. Zhang, F. Pokorny, W. Li, G. Higgins, A. Pöschl, I. Lesanovsky, and M. Hennrich, Submicrosecond entangling gate between trapped ions via Rydberg interaction, Nature 580, 345 (2020)
https://doi.org/10.1038/s41586-020-2152-9
98 X.-F. Shi, Fast, Accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11, 044035 (2019)
https://doi.org/10.1103/PhysRevApplied.11.044035
99 X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and M. Saffman, Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography, Phys. Rev. A 85, 042310 (2012)
https://doi.org/10.1103/PhysRevA.85.042310
100 X.-F. Shi, Accurate quantum logic gates by spin echo in Rydberg atoms, Phys. Rev. Appl. 10, 034006 (2018)
https://doi.org/10.1103/PhysRevApplied.10.034006
101 L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367, 47 (2007)
https://doi.org/10.1016/j.physleta.2007.02.069
102 E. J. Robertson, N. ŠˇSibalić, R. M. Potvliege, and M. P. A. Jones, ARC 3.0: An expanded Python toolbox for atomic physics, Comp. Phys. Comm. 261, 107814 (2021)
https://doi.org/10.1016/j.cpc.2020.107814
103 H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz, and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel quantum defect theory analysis, Phys. Rev. A 98, 062506 (2018)
https://doi.org/10.1103/PhysRevA.98.062506
104 B. Kaulakys, Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B 28, 4963 (1995)
https://doi.org/10.1088/0953-4075/28/23/008
105 X.-F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90, 062327 (2014)
https://doi.org/10.1103/PhysRevA.90.062327
106 X.-F. Shi, Transition slow-down by Rydberg interactionof neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14, 054058 (2020)
https://doi.org/10.1103/PhysRevApplied.14.054058
107 J. S. Ross and K. Murakawa, Nuclear quadrupole moment of Yb173, Phys. Rev. 128, 1159 (1962)
https://doi.org/10.1103/PhysRev.128.1159
108 M. Aymar, Multichannel-quantum-defect theory wavefunctions of Ba tested or improved by laser measurements, J. Opt. Soc. Am. B 1, 239 (1984)
https://doi.org/10.1364/JOSAB.1.000239
109 L. Xingye, L. Wanfa, J. Zhankui, and J. Larsson, Test of the multichannel quantum-defect wave function by a Landé-factor (gJ ) investigation in the perturbed 6snp1,3P1 sequencesof Yb I, Phys. Rev. A 49, 4443 (1994)
https://doi.org/10.1103/PhysRevA.49.4443
110 T. Ido and H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb–Dicke regime, Phys. Rev. Lett. 91, 053001 (2003)
https://doi.org/10.1103/PhysRevLett.91.053001
111 S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S. Yoshida, S. Nagele, and J. Burgdörfer, Production of very-high-n strontium Rydberg atoms, Phys. Rev. A 88, 043430 (2013)
https://doi.org/10.1103/PhysRevA.88.043430
112 C. Gaul, B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, and T. Pohl, Resonant Rydberg dressing of alkaline-earth atoms via electromagnetically induced transparency, Phys. Rev. Lett. 116, 243001 (2016)
https://doi.org/10.1103/PhysRevLett.116.243001
113 M. N. Winchester, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, Magnetically Induced optical transparency on a forbidden transition in strontium for cavityenhanced spectroscopy, Phys. Rev. Lett. 118, 263601 (2017)
https://doi.org/10.1103/PhysRevLett.118.263601
114 R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Spectroscopy of Sr87 triplet Rydberg states, Phys. Rev. A 98, 042505 (2018)
https://doi.org/10.1103/PhysRevA.98.042505
115 H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, Oscillator strengths and radiative branching ratios in atomic Sr, Phys. Rev. A 46, 1248 (1992)
https://doi.org/10.1103/PhysRevA.46.1248
116 C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Longrange Rydberg–Rydberg interactions in calcium, strontium and ytterbium, J. Phys. B: At. Mol. Opt. Phys. 45, 135004 (2012)
https://doi.org/10.1088/0953-4075/45/13/135004
117 C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Multichannel quantum defect theory of strontium bound Rydberg states, J. Phys. B: At. Mol. Opt. Phys. 47, 155001 (2014)
https://doi.org/10.1088/0953-4075/47/15/155001
118 F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgdörfer, Recent advances in Rydberg physics using alkalineearth atoms, J. Phys. B 49, 112003 (2016)
https://doi.org/10.1088/0953-4075/49/11/112003
119 F. Robicheaux, Calculations of long range interactions for 87Sr Rydberg states, J. Phys. B 52, 244001 (2019)
https://doi.org/10.1088/1361-6455/ab4c22
120 R. Mukherjee, J. Millen, R. Nath, M. P. Jones, and T. Pohl, Many-body physics with alkaline-earth Rydberg lattices, J. Phys. B 44, 184010 (2011)
https://doi.org/10.1088/0953-4075/44/18/184010
121 X. Zhang, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Rydberg blockade effects at n∼ 300 instrontium, Phys. Rev. A 92, 051402(R) (2015)
https://doi.org/10.1103/PhysRevA.92.051402
122 B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, Rydberg–blockade effectsin Autler–Townes spectra of ultracold strontium, Phys. Rev. A 93, 022709 (2016)
https://doi.org/10.1103/PhysRevA.93.022709
123 S. Yoshida, J. Burgdörfer, X. Zhang, and F. B. Dunning, Rydberg blockade in a hot atomic beam, Phy. Rev. A 95, 042705 (2017)
https://doi.org/10.1103/PhysRevA.95.042705
124 J. E. Sansonetti and G. Nave, Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I), J. Phys. Chem. Ref. Data 39, 033103 (2010)
https://doi.org/10.1063/1.3449176
125 R. J. Fonck, F. L. Roesler, D. H. Tracy, K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Atomic diamagnetism and diamagnetically induced configuration mixing in laser-excited barium, Phys. Rev. Lett. 39, 1513 (1977)
https://doi.org/10.1103/PhysRevLett.39.1513
126 C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98, 023002 (2007)
https://doi.org/10.1103/PhysRevLett.98.023002
127 T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104, 013001 (2010)
https://doi.org/10.1103/PhysRevLett.104.013001
128 S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131, 53001 (2020)
https://doi.org/10.1209/0295-5075/131/53001
129 A. Lurio, M. Mandel, and R. Novick, Second-order hyperfineand Zeeman corrections for an (sl) configuration, Phys. Rev. 126, 1758 (1962)
https://doi.org/10.1103/PhysRev.126.1758
130 D. W. Fang, W. J. Xie, Y. Zhang, X. Hu, and Y. Y. Liu, Radiative lifetimes of Rydberg state of ytterbium, J. Quant. Spectrosc. Ra. 69, 469 (2001)
https://doi.org/10.1016/S0022-4073(00)00096-0
131 J. P. Covey, A. Sipahigil, and M. Saffman, Microwavetooptical conversion via four-wave mixing in a cold ytterbium ensemble, Phys. Rev. A 100, 012307 (2019)
https://doi.org/10.1103/PhysRevA.100.012307
132 D. A. Steck, Quantum and Atom Optics,
133 T. G. Walker and M. Saffman, Consequences of Zeemandegeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77, 032723 (2008)
https://doi.org/10.1103/PhysRevA.77.032723
134 T. Zelevinsky, M. M. Boyd, A. D. Ludlow, T. Ido, J. Ye, R. Ciury lo, P. Naidon, and P. S. Julienne, Narrow line photo association in an optical lattice, Phys. Rev. Lett. 96, 203201 (2006)
https://doi.org/10.1103/PhysRevLett.96.203201
135 J. Millen, G. Lochead, and M. P. A. Jones, Two electron excitation of an interacting cold Rydberg gas, Phys. Rev. Lett. 105, 213004 (2010)
https://doi.org/10.1103/PhysRevLett.105.213004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed