Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53502   https://doi.org/10.1007/s11467-021-1073-x
  本期目录
Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3
Chong Xu1, Qian-Jun Wang1, Bin Xu1, Jun Hu1,2()
1. School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
2. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
 全文: PDF(1978 KB)  
Abstract

Two-dimensional van der Waals magnetic materials are intriguing for applications in the future spintronics devices, so it is crucial to explore strategy to control the magnetic properties. Here, we carried out first-principles calculations and Monte Carlo simulations to investigate the effect of biaxial strain and hydrostatic pressure on the magnetic properties of the bilayer CrI3. We found that the magnetic anisotropy, intralayer and interlayer exchange interactions, and Curie temperature can be tuned by biaxial strain and hydrostatic pressure. Large compressive biaxial strain may induce a ferromagneticto-antiferromagnetic transition of both CrI3 layers. The hydrostatic pressure could enhance the intralayer exchange interaction significantly and hence largely boost the Curie temperature. The effect of the biaxial strain and hydrostatic pressure revealed in the bilayer CrI3 may be generalized to other two-dimensional magnetic materials.

Key wordsbilayer CrI3    biaxial strain    hydrostatic pressure    magnetic properties
收稿日期: 2021-01-19      出版日期: 2021-09-17
Corresponding Author(s): Jun Hu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53502.
Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3. Front. Phys. , 2021, 16(5): 53502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1073-x
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53502
1 1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 X. M. Li, L. Tao, Z. F. Chen, H. Fang, X. S. Li, X. R. Wang, J. B. Xu, and H. W. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics, Appl. Phys. Rev. 4(2), 021306 (2017)
https://doi.org/10.1063/1.4983646
3 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
4 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
5 N. D. Mermin and H. Wagner, Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)
https://doi.org/10.1103/PhysRevLett.17.1133
6 M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
https://doi.org/10.1038/s41565-018-0063-9
7 Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. B. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
8 C. Gong and X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363(6428), eaav4450 (2019)
https://doi.org/10.1126/science.aav4450
9 B. Huang, M. A. McGuire, A. F. May, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures, Nat. Mater. 19(12), 1276 (2020)
https://doi.org/10.1038/s41563-020-0791-8
10 J. F. Jr Dillon and C. E. Olson, Magnetization, resonance, and optical properties of the ferromagnet CrI3, J. Appl. Phys. 36(3), 1259 (1965)
https://doi.org/10.1063/1.1714194
11 M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
https://doi.org/10.1021/cm504242t
12 T. Latychevskaia, S. K. Son, Y. Yang, D. Chancellor, M. Brown, S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko, and K. S. Novoselov, Stacking transition in rhombohedral graphite, Front. Phys. 14, 13608 (2019)
https://doi.org/10.1007/s11467-018-0867-y
13 N. Sivadas, S. Okamoto, X. D. Xu, C. J. Fennie, and D. Xiao, Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
https://doi.org/10.1021/acs.nanolett.8b03321
14 P. H. Jiang, C. Wang, D. C. Chen, Z. C. Zhong, Z. Yuan, Z. Y. Lu, and W. Ji, Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
https://doi.org/10.1103/PhysRevB.99.144401
15 D. Soriano, C. Cardoso, and J. Fernández-Rossier, Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
https://doi.org/10.1016/j.ssc.2019.113662
16 S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, and M. J. Han, Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.031001
17 S. Jiang, J. Shan, and K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets, Nat. Mater. 17(5), 406 (2018)
https://doi.org/10.1038/s41563-018-0040-6
18 B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. D. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
https://doi.org/10.1038/s41565-018-0121-3
19 X. X. Zhang, L. Li, D. Weber, J. Goldberger, K. F. Mak, and J. Shan, Gate-tunable spin waves in antiferromagnetic atomic bilayers, Nat. Mater. 19(8), 838 (2020)
https://doi.org/10.1038/s41563-020-0713-9
20 T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
https://doi.org/10.1038/s41563-019-0506-1
21 T. C. Song, Z. Y. Fei, M. Yankowitz, Z. Lin, Q. N. Jiang, K. Hwangbo, Q. Zhang, B. S. Sun, T. Taniguchi, K. Watanabe, M. A. McGuire, D. Graf, T. Cao, J. H. Chu, D. H. Cobden, C. R. Dean, D. Xiao, and X. D. Xu, Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
https://doi.org/10.1038/s41563-019-0505-2
22 J. L. Lado and J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional CrI3, 2D Mater. 4, 035002 (2017)
https://doi.org/10.1088/2053-1583/aa75ed
23 F. Xue, Y. Hou, Z. Wang, and R. Wu, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
https://doi.org/10.1103/PhysRevB.100.224429
24 J. Liu, P. Mo, M. Shi, D. Gao, and J. Lu, Multiscale analysis of strain-dependent magnetocrystalline anisotropy and strain-induced Villari and Nagaoka-Honda effects in a two-dimensional ferromagnetic chromium tri-iodide monolayer, J. Appl. Phys. 124(4), 044303 (2018)
https://doi.org/10.1063/1.5036924
25 J. Liu, M. Shi, J. Lu, and M. P. Anantram, Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a twodimensional ferromagnetic monolayer, Phys. Rev. B 97(5), 054416 (2018)
https://doi.org/10.1103/PhysRevB.97.054416
26 L. Webster and J. A. Yan, Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3, Phys. Rev. B 98(14), 144411 (2018)
https://doi.org/10.1103/PhysRevB.98.144411
27 F. Zheng, J. Zhao, Z. Liu, M. Li, M. Zhou, S. Zhang, and P. Zhang, Tunable spin states in the two-dimensional magnet CrI3, Nanoscale 10(29), 14298 (2018)
https://doi.org/10.1039/C8NR03230K
28 A. M. León, J. W. González, J. Mejía-López, F. Crasto de Lima, and E. S. Morell, Strain-induced phase transition in CrI3 bilayers, 2D Mater. 7, 035008 (2020)
https://doi.org/10.1088/2053-1583/ab8268
29 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
30 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
31 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
32 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
33 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
34 J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
35 A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators, Phys. Rev. B 52(8), R5467 (1995)
https://doi.org/10.1103/PhysRevB.52.R5467
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed