Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (6): 63501   https://doi.org/10.1007/s11467-021-1076-7
  本期目录
Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure
Lei Qiao1, Ning-hua Wu1, Tianhao Li1, Siqi Wu1, Zhuyi Zhang1, Miaocong Li1, Jiang Ma1, Baijiang Lv2, Yupeng Li1, Chenchao Xu1, Qian Tao1, Chao Cao3, Guang-Han Cao1,4, Zhu-An Xu1,4()
1. Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
3. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
4. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2328 KB)  
Abstract

We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.

Key wordssuperconductivity    Kondo lattice    magnetic correlation    phase diagram
收稿日期: 2021-02-10      出版日期: 2021-07-15
Corresponding Author(s): Zhu-An Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(6): 63501.
Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. Front. Phys. , 2021, 16(6): 63501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1076-7
https://academic.hep.com.cn/fop/CN/Y2021/V16/I6/63501
1 L. N. Bulaevskii, A. I. Buzdin, M. L. Kulić, and S. V. Panjukov, Coexistence of superconductivity and magnetism theoretical predictions and experimental results, Adv. Phys. 34(2), 175 (1985)
https://doi.org/10.1080/00018738500101741
2 P. W. Anderson, Theory of dirty superconductors, J. Phys. Chem. Solids 11(1–2), 26 (1959)
https://doi.org/10.1016/0022-3697(59)90036-8
3 O. Fischer and L. B. Maple, Superconductivity in Ternary Compounds (I): Structural, Electronic, and Lattice Properties, Vol. 32, Springer Science & Business Media, 2012
4 M. B. Maple and Ø. Fischer, in: Superconductivity in Ternary Compounds (II), Vol. 34, pp 1–10, Springer, Boston, MA, 1982
https://doi.org/10.1007/978-1-4899-3768-1_1
5 D. M. Paul, H. A. Mook, A. W. Hewat, B. C. Sales, L. A. Boatner, J. R. Thompson, and M. Mostoller, Magnetic ordering in the high-temperature superconductor GdBa2Cu3O7, Phys. Rev. B 37(4), 2341 (1988)
https://doi.org/10.1103/PhysRevB.37.2341
6 B. D. Dunlap, M. Slaski, D. G. Hinks, L. Soderholm, M. Beno, K. Zhang, C. Segre, G. W. Crabtree, W. K. Kwok, S. K. Malik, I. K. Schuller, J. D. Jorgensen, and Z. Sungaila, Electronic and magnetic properties of rare-earth ions in REBa2Cu3O7 – x(RE= Dy, Ho, Er), J. Magn. Magn. Mater. 68(2), L139 (1987)
https://doi.org/10.1016/0304-8853(87)90266-6
7 B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Magnetic ordering of Gd and Cu in superconducting and nonsuperconducting GdBa2Cu3O7−δ, Phys. Rev. B 37(1), 592 (1988)
https://doi.org/10.1103/PhysRevB.37.592
8 Z. Zou, J. Ye, K. Oka, and Y. Nishihara, Superconducting PrBa2Cu3Ox, Phys. Rev. Lett. 80(5), 1074 (1998)
https://doi.org/10.1103/PhysRevLett.80.1074
9 H. Eisaki, H. Takagi, R. J. Cava, B. Batlogg, J. J. Krajewski, K. Peck, J. O. Mizuhashi, J. O. Lee, and S. Uchida, Competition between magnetism and superconductivity in rare-earth nickel boride carbides, Phys. Rev. B 50(1), 647 (1994)
https://doi.org/10.1103/PhysRevB.50.647
10 K. H. Müller and V. N. Narozhnyi, Interaction of superconductivity and magnetism in borocarbide superconductors, Rep. Prog. Phys. 64(8), 943 (2001)
https://doi.org/10.1088/0034-4885/64/8/202
11 Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, J. W. Lynn, and J. Paglione, Topological RPdBi half- Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors, Sci. Adv. 1(5), e1500242 (2015)
https://doi.org/10.1126/sciadv.1500242
12 For example, Y. Luo, H. Han, S. Jiang, X. Lin, Y. Li, J. Dai, G. Cao, and Z. A. Xu, Interplay of superconductivity and Ce 4f magnetism in CeFeAs1 – xPxO0.95F0.05, Phys. Rev. B 83(5), 054501 (2011)
https://doi.org/10.1103/PhysRevB.83.054501
13 W. A. Fertig, D. C. Johnston, L. E. De Long, R. W. Mc- Callum, M. B. Maple, and B. T. Matthias, Destruction of superconductivity at the onset of long-range magnetic order in the compound ErRh4B4, Phys. Rev. Lett. 38(17), 987 (1977)
https://doi.org/10.1103/PhysRevLett.38.987
14 M. Ishikawa and Ø. Fischer, Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8, Solid State Commun. 23(1), 37 (1977)
https://doi.org/10.1016/0038-1098(77)90625-1
15 M. Ishikawa, Ø. Fischer, and J. Muller, in: Superconductivity in Ternary Compounds II, pp 143–165, Springer, 1982
https://doi.org/10.1007/978-3-642-81894-3_5
16 L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, Chiral superconductivity in heavy-fermion metal UTe2, Nature 579(7800), 523 (2020)
https://doi.org/10.1038/s41586-020-2122-2
17 R. Sei, H. Kawasoko, K. Matsumoto, M. Arimitsu, K. Terakado, D. Oka, S. Fukuda, N. Kimura, H. Kasai, E. Nishibori, K. Ohoyama, A. Hoshikawa, T. Ishigaki, T. Hasegawa, and T. Fukumura, Tetragonality induced superconductivity in anti-ThCr2Si2-type RE2O2Bi (RE= Rare Earth) with Bi square nets, Dalton Trans. 49(10), 3321 (2020)
https://doi.org/10.1039/C9DT04640B
18 R. Sei, S. Kitani, T. Fukumura, H. Kawaji, and T. Hasegawa, Two-dimensional superconductivity emerged at monatomic Bi2 – square net in layered Y2O2Bi via oxygen incorporation, J. Am. Chem. Soc. 138(35), 11085 (2016)
https://doi.org/10.1021/jacs.6b05275
19 L. Qiao, J. Chen, B. Lv, X. Yang, J. Wu, Y. Cui, H. Bai, M. Li, Y. Li, Z. Ren, J. Dai, and Z. Xu, Antiferromagnetic Kondo lattice compound Ce2O2Bi with anti- ThCr2Si2-type structure, J. Alloys Compd. 836, 155229 (2020)
https://doi.org/10.1016/j.jallcom.2020.155229
20 K. Terakado, R. Sei, H. Kawasoko, T. Koretsune, D. Oka, T. Hasegawa, and T. Fukumura, Superconductivity in anti-ThCr2Si2-type Er2O2Bi induced by incorporation of excess oxygen with CaO oxidant, Inorg. Chem. 57(17), 10587 (2018)
https://doi.org/10.1021/acs.inorgchem.8b01199
21 B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. 34(2), 210 (2001)
https://doi.org/10.1107/S0021889801002242
22 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
23 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
24 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
25 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
26 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
27 V. I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals, Phys. Rev. B 43(10), 7570 (1991)
https://doi.org/10.1103/PhysRevB.43.7570
28 V. N. Antonov, B. N. Harmon, and A. N. Yaresko, Electronic structure of mixed-valence and charge-ordered Sm and Eu pnictides and chalcogenides, Phys. Rev. B 72(8), 085119 (2005)
https://doi.org/10.1103/PhysRevB.72.085119
29 C. Xu, Q. Chen, and C. Cao, Unique crystal field splitting and multiband RKKY interactions in Ni-doped EuRbFe4As4, Commun. Phys. 2, 16 (2019)
https://doi.org/10.1038/s42005-019-0112-1
30 H. Wang, C. Dong, Q. Mao, R. Khan, X. Zhou, C. Li, B. Chen, J. Yang, Q. Su, and M. Fang, Multiband superconductivity of heavy electrons in a TlNi2Se2 single crystal, Phys. Rev. Lett. 111(20), 207001 (2013)
https://doi.org/10.1103/PhysRevLett.111.207001
31 S. V. Shulga, S. L. Drechsler, G. Fuchs, K. H. Müller, K. Winzer, M. Heinecke, and K. Krug, Upper critical field peculiarities of superconducting YNi2B2C and LuNi2B2C, Phys. Rev. Lett. 80(8), 1730 (1998)
https://doi.org/10.1103/PhysRevLett.80.1730
32 F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. Mc Guire, B. C. Sales, D. K. Christen, and D. Mandrus, Two-band superconductivity in La FeAsO0.89F0.11 at very high magnetic fields, Nature 453(7197), 903 (2008)
https://doi.org/10.1038/nature07058
33 H. Bai, X. Yang, Y. Liu, M. Zhang, M. Wang, Y. Li, J. Ma, Q. Tao, Y. Xie, G. H. Cao, and Z. A. Xu, Superconductivity in a misfit layered compound (SnSe)1.16(NbSe2), J. Phys.: Condens. Matter 30(35), 355701 (2018)
https://doi.org/10.1088/1361-648X/aad575
34 A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67(18), 184515 (2003)
https://doi.org/10.1103/PhysRevB.67.184515
35 Y. Takeda, N. Duc Dung, Y. Nakano, T. Ishikura, S. Ikeda, T. D. Matsuda, E. Yamamoto, Y. Haga, T. Takeuchi, R. Settai, et al., Calorimetric study in single crystalline RCu2Si2 (R: Rare Earth), J. Phys. Soc. Jpn. 77(10), 104710 (2008)
https://doi.org/10.1143/JPSJ.77.104710
36 W. L. Mc Millan, Transition temperature of strongcoupled superconductors, Phys. Rev. 167(2), 331 (1968)
https://doi.org/10.1103/PhysRev.167.331
37 T. Moriya, Spin fluctuations in nearly antiferromagnetic metals, Phys. Rev. Lett. 24(25), 1433 (1970)
https://doi.org/10.1103/PhysRevLett.24.1433
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed