Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (4): 43505   https://doi.org/10.1007/s11467-021-1077-6
  本期目录
Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding
Hao Cheng1,2, Jin-Cheng Zheng1,2()
1. Department of Physics and the Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China
2. Department of Physics, Xiamen University Malaysia, 439000 Sepang, Selangor, Malaysia
 全文: PDF(2590 KB)  
Abstract

Due to the noticeable structural similarity and being neighborhood in periodic table of group-IV and-V elemental monolayers, whether the combination of group-IV and-V elements could have stable nanosheet structures with optimistic properties has attracted great research interest. In this work, we performed first-principles simulations to investigate the elastic, vibrational and electronic properties of the carbon nitride (CN) nanosheet in the puckered honeycomb structure with covalent interlayer bonding. It has been demonstrated that the structural stability of CN nanosheet is essentially maintained by the strong interlayer σ bonding between adjacent carbon atoms in the opposite atomic layers. A negative Poisson’s ratio in the out-of-plane direction under biaxial deformation, and the extreme in-plane stiffness of CN nanosheet, only slightly inferior to the monolayer graphene, are revealed. Moreover, the highly anisotropic mechanical and electronic response of CN nanosheet to tensile strain have been explored.

Key wordscarbon-nitride    anisotropy    Poisson’s ratio    strain engineering    in-plane strength    interlayer bonding
收稿日期: 2021-01-22      出版日期: 2021-06-18
Corresponding Author(s): Jin-Cheng Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(4): 43505.
Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding. Front. Phys. , 2021, 16(4): 43505.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1077-6
https://academic.hep.com.cn/fop/CN/Y2021/V16/I4/43505
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
2 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)
https://doi.org/10.1038/nature04235
3 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006)
https://doi.org/10.1126/science.1125925
4 H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45, 6303 (2006)
https://doi.org/10.1002/anie.200600321
5 S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
6 P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947)
https://doi.org/10.1103/PhysRev.71.622
7 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8, 4033 (2014)
https://doi.org/10.1021/nn501226z
8 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9, 372 (2014)
https://doi.org/10.1038/nnano.2014.35
9 J.-H. Lin, H. Zhang, and X.-L. Cheng, First-principle study on the optical response of phosphorene, Front. Phys. 10, 1 (2015)
https://doi.org/10.1007/s11467-015-0468-y
10 J.-C. Zheng, H.-Q. Wang, A. Wee, and C. Huan, Structural and electronic properties of Al nanowires: An ab initio pseudopotential study, Int. J. Nanosci. 1, 159 (2002)
https://doi.org/10.1142/S0219581X02000097
11 Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y. P. Feng, and J.-C. Zheng, Review of borophene and its potential applications, Front. Phys. 14, 33403 (2019)
https://doi.org/10.1007/s11467-019-0884-5
12 J.-C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10, 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
13 C. Niu, Y. Z. Lu, and C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science 261, 334 (1993)
https://doi.org/10.1126/science.261.5119.334
14 K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Observation of crystalline C3N4, Phys. Rev. B 49, 5034 (1994)
https://doi.org/10.1103/PhysRevB.49.5034
15 H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, Carbon nitride films synthesized by NH3-ion-beamassisted deposition, J. Phys.: Condens. Matter 6, 6125 (1994)
https://doi.org/10.1088/0953-8984/6/31/011
16 A. Bousetta, M. Lu, A. Bensaoula, and A. Schultz, Formation of carbon nitride films on Si(100) substrates by electron cyclotron resonance plasma assisted vapor deposition, Appl. Phys. Lett. 65, 696 (1994)
https://doi.org/10.1063/1.112272
17 Z. J. Zhang, S. Fan, and C. M. Lieber, Growth and composition of covalent carbon nitride solids, Appl. Phys. Lett. 66, 3582 (1995)
https://doi.org/10.1063/1.113794
18 S. R. J. Pearce, P. W. May, R. K. Wild, K. R. Hallam, and P. J. Heard, Deposition and properties of amorphous carbon phosphide films, Diam. Relat. Mater. 11, 1041 (2002)
https://doi.org/10.1016/S0925-9635(01)00611-2
19 F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, and M. N. R. Ashfold, Phosphorus carbides: Theory and experiment, Dalton Trans. 2004, 3085 (2004)
https://doi.org/10.1039/b402740j
20 J. N. Hart, P. W. May, N. L. Allan, K. R. Hallam, F. Claeyssens, G. M. Fuge, M. Ruda, and P. J. Heard, Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition, J. Solid State Chem. 198, 466 (2013)
https://doi.org/10.1016/j.jssc.2012.11.008
21 A. Furlan, G. K. Gueorguiev, Z. Czigány, H. H?gberg, S. Braun, S. Stafström, and L. Hultman, Synthesis of phosphorus-carbide thin films by magnetron sputtering, Phys. Status Solidi RRL 2, 191 (2008)
https://doi.org/10.1002/pssr.200802077
22 M. Côté and M. L. Cohen, Carbon nitride compounds with 1:1 stoichiometry, Phys. Rev. B 55, 5684 (1997)
https://doi.org/10.1103/PhysRevB.55.5684
23 J.-C. Zheng, M. C. Payne, Y. P. Feng, and A. T.-L. Lim, Stability and electronic properties of carbon phosphide compounds with 1:1 stoichiometry, Phys. Rev. B 67, 153105 (2003)
https://doi.org/10.1103/PhysRevB.67.153105
24 G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8, 8819 (2016)
https://doi.org/10.1039/C6NR00498A
25 A. K. Geim and I. V. Grigorieva, van der Waals heterostructures, Nature 499, 419 (2013)
https://doi.org/10.1038/nature12385
26 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and Van der Waals heterostructures, Science 353, aac9439 (2016)
https://doi.org/10.1126/science.aac9439
27 X.-R. Hu, J.-M. Zheng, and Z.-Y. Ren, Strong interlayer coupling in phosphorene/graphene Van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)
https://doi.org/10.1007/s11467-017-0736-0
28 P. L. de Andres, R. Ramírez, and J. A. Vergés, Strong covalent bonding between two graphene layers, Phys. Rev. B 77, 045403 (2008)
https://doi.org/10.1103/PhysRevB.77.045403
29 J.-J. Li, Y. Dai, and J.-C. Zheng, Strain engineering of ion migration in LiCoO2, Front. Phys., doi:10.1007/s11467-021-1086-5 (2021)
30 J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite, Phys. Rev. Lett. 102, 087402 (2009)
https://doi.org/10.1103/PhysRevLett.102.087402
31 K. Nishioka and K. Nasu, Cooperative domain-type interlayer sp3-bond formation in graphite, Phys. Rev. B 82, 035440 (2010)
https://doi.org/10.1103/PhysRevB.82.035440
32 S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)
https://doi.org/10.1038/nmat2753
33 Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49, 2653 (2011)
https://doi.org/10.1016/j.carbon.2011.02.051
34 T. Guo, Z.-D. Sha, X. Liu, G. Zhang, T. Guo, Q.-X. Pei, and Y.-W. Zhang, Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain, Appl. Phys. A 120, 1275 (2015)
https://doi.org/10.1007/s00339-015-9373-z
35 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009)
https://doi.org/10.1088/0953-8984/21/39/395502
36 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
37 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
38 Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63, 1719 (1989)
https://doi.org/10.1103/PhysRevLett.63.1719
39 V. Fiorentini and A. Baldereschi, Dielectric scaling of the self-energy scissor operator in semiconductors and insulators, Phys. Rev. B 51, 17196 (1995)
https://doi.org/10.1103/PhysRevB.51.17196
40 M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986)
https://doi.org/10.1103/PhysRevB.34.5390
41 O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys. Rev. B 50, 10780 (1994)
https://doi.org/10.1103/PhysRevB.50.10780
42 P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Ab initio GW many-body effects in graphene, Phys. Rev. Lett. 101, 226405 (2008)
https://doi.org/10.1103/PhysRevLett.101.226405
43 H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations, Phys. Rev. B 80, 155453 (2009)
https://doi.org/10.1103/PhysRevB.80.155453
44 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008)
https://doi.org/10.1126/science.1157996
45 J.-W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10, 287 (2015)
https://doi.org/10.1007/s11467-015-0459-z
46 F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76, 064120 (2007)
https://doi.org/10.1103/PhysRevB.76.064120
47 J. Wu, B. Wang, Y. Wei, R. Yang, and M. Dresselhaus, Mechanics and mechanically tunable band gap in singlelayer hexagonal boron–nitride, Mater. Res. Lett. 1, 200 (2013)
https://doi.org/10.1080/21663831.2013.824516
48 J.-W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16, 5286 (2016)
https://doi.org/10.1021/acs.nanolett.6b02538
49 G. Qin and Z. Qin, Negative Poisson’s ratio in twodimensional honeycomb structures, npj Comput. Mater. 6, 51 (2020)
https://doi.org/10.1038/s41524-020-0313-x
50 T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan, “Ideal” engineering alloys, Phys. Rev. Lett. 98, 105503 (2007)
https://doi.org/10.1103/PhysRevLett.98.105503
51 T. Li, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B 85, 235407 (2012)
https://doi.org/10.1103/PhysRevB.85.235407
52 T.-Y. Lü, X.-X. Liao, H.-Q. Wang, and J.-C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22, 10062 (2012)
https://doi.org/10.1039/c2jm30915g
[1] supplementary material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed