Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 51502   https://doi.org/10.1007/s11467-021-1087-4
  本期目录
Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity
Sai Li1, Pu Shen1, Tao Chen1, Zheng-Yuan Xue1,2()
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 全文: PDF(1303 KB)  
Abstract

High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefore, implementing high-fidelity, robust and fast quantum gates is highly desired. Here, we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity. In our proposal, the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally, leading to high-fidelity quantum gates in a simple setup. Besides, our scheme is readily realizable in physical system currently pursued for implementation of quantum computation. Therefore, our proposal represents a promising way towards fault-tolerant geometric quantum computation.

Key wordsnoncyclic    holonomic quantum gates    shortcuts to adiabaticity    Lewis–Riesenfeld invariant
收稿日期: 2021-03-01      出版日期: 2021-07-13
Corresponding Author(s): Zheng-Yuan Xue   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 51502.
Sai Li, Pu Shen, Tao Chen, Zheng-Yuan Xue. Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity. Front. Phys. , 2021, 16(5): 51502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1087-4
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/51502
1 R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)
https://doi.org/10.1007/BF02650179
2 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
3 F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52(24), 2111 (1984)
https://doi.org/10.1103/PhysRevLett.52.2111
4 Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
5 P. Solinas, P. Zanardi, and N. Zanghì, Robustness of non-Abelian holonomic quantum gates against parametric noise, Phys. Rev. A 70(4), 042316 (2004)
https://doi.org/10.1103/PhysRevA.70.042316
6 S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)
https://doi.org/10.1103/PhysRevLett.94.100502
7 C. Lupo, P. Aniello, M. Napolitano, and G. Florio, Robustness against parametric noise of nonideal holonomic gates, Phys. Rev. A 76(1), 012309 (2007)
https://doi.org/10.1103/PhysRevA.76.012309
8 S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, and H. Rauch, Experimental demonstration of the stability of Berry’s phase for a spin- 1/2 particle, Phys. Rev. Lett. 102(3), 030404 (2009)
https://doi.org/10.1103/PhysRevLett.102.030404
9 J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
https://doi.org/10.1007/s11467-020-0976-2
10 Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)
https://doi.org/10.1103/PhysRevLett.124.230503
11 E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
https://doi.org/10.1088/1367-2630/14/10/103035
12 G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
https://doi.org/10.1103/PhysRevLett.109.170501
13 Y. C. Zheng and T. A. Brun, Fault-tolerant holonomic quantum computation in surface codes, Phys. Rev. A 91(2), 022302 (2015)
https://doi.org/10.1103/PhysRevA.91.022302
14 G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Nonadiabatic holonomic gates realized by a single-shot implementation, Phys. Rev. A 92(5), 052302 (2015)
https://doi.org/10.1103/PhysRevA.92.052302
15 E. Herterich and E. Sjöqvist, Single-loop multiple-pulse nonadiabatic holonomic quantum gates, Phys. Rev. A 94(5), 052310 (2016)
https://doi.org/10.1103/PhysRevA.94.052310
16 Z. P. Hong, B. J. Liu, J. Q. Cai, X. D. Zhang, Y. Hu, Z. D. Wang, and Z. Y. Xue, Implementing universal nonadiabatic holonomic quantum gates with transmons, Phys. Rev. A 97(2), 022332 (2018)
https://doi.org/10.1103/PhysRevA.97.022332
17 J. Zhang, S. J. Devitt, J. Q. You, and F. Nori, Holonomic surface codes for fault-tolerant quantum computation, Phys. Rev. A 97(2), 022335 (2018)
https://doi.org/10.1103/PhysRevA.97.022335
18 T. Chen, J. Zhang, and Z. Y. Xue, Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries, Phys. Rev. A 98(5), 052314 (2018)
https://doi.org/10.1103/PhysRevA.98.052314
19 N. Ramberg and E. Sjöqvist, Environment-assisted holonomic quantum maps, Phys. Rev. Lett. 122(14), 140501 (2019)
https://doi.org/10.1103/PhysRevLett.122.140501
20 C. Wu, Y. Wang, X. L. Feng, and J. L. Chen, Holonomic quantum computation in surface codes, Phys. Rev. Appl. 13(1), 014055 (2020)
https://doi.org/10.1103/PhysRevApplied.13.014055
21 A. A. Jr Abdumalikov, J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff, and S. Filipp, Experimental realization of non-Abelian non-adiabatic geometric gates, Nature 496(7446), 482 (2013)
https://doi.org/10.1038/nature12010
22 G. Feng, G. Xu, and G. Long, Experimental realization of nonadiabatic holonomic quantum computation, Phys. Rev. Lett. 110(19), 190501 (2013)
https://doi.org/10.1103/PhysRevLett.110.190501
23 C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, Experimental realization of universal geometric quantum gates with solid-state spins, Nature 514(7520), 72 (2014)
https://doi.org/10.1038/nature13729
24 S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin, Nat. Commun. 5(1), 4870 (2014)
https://doi.org/10.1038/ncomms5870
25 Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, Optical holonomic single quantum gates with a geometric spin under a zero field, Nat. Photonics 11(5), 309 (2017)
https://doi.org/10.1038/nphoton.2017.40
26 B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard, and D. D. Awschalom, Holonomic quantum control by coherent optical excitation in diamond, Phys. Rev. Lett. 119(14), 140503 (2017)
https://doi.org/10.1103/PhysRevLett.119.140503
27 H. Li, Y. Liu, and G. L. Long, Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins, Sci. China Phys. Mech. Astron. 60(8), 080311 (2017)
https://doi.org/10.1007/s11433-017-9058-7
28 Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary nonadiabatic holonomic singlequbit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)
https://doi.org/10.1103/PhysRevLett.121.110501
29 N. Ishida, T. Nakamura, T. Tanaka, S. Mishima, H. Kano, R. Kuroiwa, Y. Sekiguchi, and H. Kosaka, Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light, Opt. Lett. 43(10), 2380 (2018)
https://doi.org/10.1364/OL.43.002380
30 K. Nagata, K. Kuramitani, Y. Sekiguchi, and H. Kosaka, Universal holonomic quantum gates over geometric spin qubits with polarised microwaves, Nat. Commun. 9(1), 3227 (2018)
https://doi.org/10.1038/s41467-018-05664-w
31 D. J. Egger, M. Ganzhorn, G. Salis, A. Fuhrer, P. Muller, P. K. Barkoutsos, N. Moll, I. Tavernelli, and S. Filipp, Entanglement generation in superconducting qubits using holonomic operations, Phys. Rev. Appl. 11(1), 014017 (2019)
https://doi.org/10.1103/PhysRevApplied.11.014017
32 S. B. Zheng, C. P. Yang, and F. Nori, Comparison of the sensitivity to systematic errors between nonadiabatic non- Abelian geometric gates and their dynamical counterparts, Phys. Rev. A 93(3), 032313 (2016)
https://doi.org/10.1103/PhysRevA.93.032313
33 J. Jing, C. H. Lam, and L. A. Wu, Non-Abelian holonomic transformation in the presence of classical noise, Phys. Rev. A 95(1), 012334 (2017)
https://doi.org/10.1103/PhysRevA.95.012334
34 Y. C. Zheng and T. A. Brun, Fault-tolerant scheme of holonomic quantum computation on stabilizer codes with robustness to low-weight thermal noise, Phys. Rev. A 89(3), 032317 (2014)
https://doi.org/10.1103/PhysRevA.89.032317
35 J. Zhang, L. C. Kwek, E. Sjöqvist, D. M. Tong, and P. Zanardi, Quantum computation in noiseless subsystems with fast non-Abelian holonomies, Phys. Rev. A 89(4), 042302 (2014)
https://doi.org/10.1103/PhysRevA.89.042302
36 Z. T. Liang, Y. X. Du, W. Huang, Z. Y. Xue, and H. Yan, Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions, Phys. Rev. A 89(6), 062312 (2014)
https://doi.org/10.1103/PhysRevA.89.062312
37 J. Zhou, W. C. Yu, Y. M. Gao, and Z. Y. Xue, Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers, Opt. Express 23(11), 14027 (2015)
https://doi.org/10.1364/OE.23.014027
38 Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)
https://doi.org/10.1103/PhysRevA.92.022320
39 Y. Wang, J. Zhang, C. Wu, J. Q. You, and G. Romero, Holonomic quantum computation in the ultrastrongcoupling regime of circuit QED, Phys. Rev. A 94(1), 012328 (2016)
https://doi.org/10.1103/PhysRevA.94.012328
40 Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Nonadiabatic holonomic quantum computation with all-resonant control, Phys. Rev. A 94(2), 022331 (2016)
https://doi.org/10.1103/PhysRevA.94.022331
41 Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang, Y. Hu, and J. Q. You, Nonadiabatic holonomic quantum computation with dressed-state qubits, Phys. Rev. Appl. 7(5), 054022 (2017)
https://doi.org/10.1103/PhysRevApplied.7.054022
42 P. Z. Zhao, G. F. Xu, Q. M. Ding, E. Sjöqvist, and D. M. Tong, Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces, Phys. Rev. A 95(6), 062310 (2017)
https://doi.org/10.1103/PhysRevA.95.062310
43 L. N. Ji, T. Chen, and Z. Y. Xue, Scalable nonadiabatic holonomic quantum computation on a superconducting qubit lattice, Phys. Rev. A 100(6), 062312 (2019)
https://doi.org/10.1103/PhysRevA.100.062312
44 Y. Wang, Y. Su, X. Chen, and C. Wu, Dephasingprotected scalable holonomic quantum computation on a Rabi lattice, Phys. Rev. Appl. 14(4), 044043 (2020)
https://doi.org/10.1103/PhysRevApplied.14.044043
45 G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong, Composite nonadiabatic holonomic quantum computation, Phys. Rev. A 95(3), 032311 (2017)
https://doi.org/10.1103/PhysRevA.95.032311
46 Z. Zhu, T. Chen, X. Yang, J. Bian, Z. Y. Xue, and X. Peng, Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace, Phys. Rev. Appl. 12(2), 024024 (2019)
https://doi.org/10.1103/PhysRevApplied.12.024024
47 Y. Sekiguchi, Y. Komura, and H. Kosaka, Dynamical decoupling of a geometric qubit, Phys. Rev. Appl. 12(5), 051001 (2019)
https://doi.org/10.1103/PhysRevApplied.12.051001
48 B. J. Liu, Z. H. Huang, Z. Y. Xue, and X. D. Zhang, Superadiabatic holonomic quantum computation in cavity QED, Phys. Rev. A 95(6), 062308 (2017)
https://doi.org/10.1103/PhysRevA.95.062308
49 B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
https://doi.org/10.1103/PhysRevLett.123.100501
50 T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
https://doi.org/10.1103/PhysRevLett.122.080501
51 S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
https://doi.org/10.1002/qute.202000001
52 M. Z. Ai, S. Li, Z. Hou, Z. Y. Xue, J. M. Cui, Y. F. Huang, C. F. Li, and G. C. Guo, Experimental realization of nonadiabatic holonomic single-qubit quantum gates with optimal control in a trapped ion, Phys. Rev. Appl. 14(5), 054062 (2020)
https://doi.org/10.1103/PhysRevApplied.14.054062
53 M. Z. Ai, S. Li, Z. Y. Xue, J. M. Cui, Y. F. Huang, C. F. Li, and G. C. Guo, Experimental realization of nonadiabatic holonomic single-qubit quantum gates with two dark paths in a trapped ion, arXiv: 2101.07483 (2021)
54 B. J. Liu, Y. S. Wang, and M. H. Yung, Global property condition-based non-adiabatic geometric quantum control, arXiv: 2008.02176(2020)
55 S. Li and Z. Y. Xue, Dynamically corrected nonadiabatic holonomic quantum gates, arXiv: 2012.09034 (2020)
56 G. F. Xu, D. M. Tong, and E. Sjöqvist, Path-shortening realizations of nonadiabatic holonomic gates, Phys. Rev. A 98(5), 052315 (2018)
https://doi.org/10.1103/PhysRevA.98.052315
57 F. Zhang, J. Zhang, P. Gao, and G. Long, Searching nonadiabatic holonomic quantum gates via an optimization algorithm, Phys. Rev. A 100(1), 012329 (2019)
https://doi.org/10.1103/PhysRevA.100.012329
58 T. Chen, P. Shen, and Z. Y. Xue, Robust and fast holonomic quantum gates with encoding on superconducting circuits, Phys. Rev. Appl. 14(3), 034038 (2020)
https://doi.org/10.1103/PhysRevApplied.14.034038
59 B. J. Liu, Z. Y. Xue, and M. H. Yung, Brachistochrone non-Adiabatic holonomic quantum control, arXiv: 2001.05182 (2020)
60 Z. Han, Y. Dong, B. Liu, X. Yang, S. Song, L. Qiu, D. Li, J. Chu, W. Zheng, J. Xu, T. Huang, Z. Wang, X. Yu, X. Tan, D. Lan, M. H. Yung, and Y. Yu, Experimental realization of universal time-optimal non-Abelian geometric gates, arXiv: 2004.10364 (2020)
61 X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Gu’ery-Odelin, and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104(6), 063002 (2010)
https://doi.org/10.1103/PhysRevLett.104.063002
62 D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
https://doi.org/10.1103/RevModPhys.91.045001
63 H. R. Jr Lewis and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10(8), 1458 (1969)
https://doi.org/10.1063/1.1664991
64 X. Chen and J. G. Muga, Engineering of fast population transfer in three-level systems, Phys. Rev. A 86(3), 033405 (2012)
https://doi.org/10.1103/PhysRevA.86.033405
65 Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841 (2018)
https://doi.org/10.1103/PhysRevA.97.023841
66 J. Zhou, S. Li, T. Chen, and Z. Y. Xue, Fast hybrid quantum state transfer and entanglement generation via no transition passage, Ann. Phys. (Berlin) 531(4), 1800402 (2019)
https://doi.org/10.1002/andp.201800402
67 Y. Yan, Y. Li, A. Kinos, A. Walther, C. Y. Shi, L. Rippe, J. Moser, S. Kröll, and X. Chen, Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency, Opt. Express 27(6), 8267 (2019)
https://doi.org/10.1364/OE.27.008267
68 T. Chen and Z. Y. Xue, High-fidelity and robust geometric quantum gates that outperform dynamical ones, Phys. Rev. Appl. 14(6), 064009 (2020)
https://doi.org/10.1103/PhysRevApplied.14.064009
69 Y. Zheng, S. Campbell, G. De Chiara, and D. Poletti, Cost of counterdiabatic driving and work output, Phys. Rev. A 94(4), 042132 (2016)
https://doi.org/10.1103/PhysRevA.94.042132
70 O. Abah, R. Puebla, A. Kiely, G. De Chiara, M. Paternostro, and S. Campbell, Energetic cost of quantum control protocols, New J. Phys. 21(10), 103048 (2019)
https://doi.org/10.1088/1367-2630/ab4c8c
71 J. F. Poyatos, J. I. Cirac, and P. Zoller, Complete characterization of a quantum process: The two-bit quantum gate, Phys. Rev. Lett. 78(2), 390 (1997)
https://doi.org/10.1103/PhysRevLett.78.390
72 M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen, P. J. Leek, T. P. Orlando, W. D. Oliver, and S. Gustavsson, Coherence and decay of higher energy levels of a superconducting transmon qubit, Phys. Rev. Lett. 114(1), 010501 (2015)
https://doi.org/10.1103/PhysRevLett.114.010501
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed