Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (6): 64602   https://doi.org/10.1007/s11467-021-1089-2
  本期目录
Muon spinning its way to new physics
Kim Siang Khaw1,2(), Liang Li2(), Jing Shu3
1. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
2. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(382 KB)  
Abstract

The first results from the Fermilab Muon g–2 Experiment shed lights on the mystery surrounding the magnetic anomaly of the muon. This could become a window into a new era of particle physics.

收稿日期: 2021-05-24      出版日期: 2021-07-13
Corresponding Author(s): Kim Siang Khaw,Liang Li   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(6): 64602.
Kim Siang Khaw, Liang Li, Jing Shu. Muon spinning its way to new physics. Front. Phys. , 2021, 16(6): 64602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1089-2
https://academic.hep.com.cn/fop/CN/Y2021/V16/I6/64602
1 C. D. Anderson and S. H. Neddermeyer, Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level, Phys. Rev. 50, 263 (1936)
https://doi.org/10.1103/PhysRev.50.263
2 G. W. Bennett, et al. [Muon g–2], Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006), arXiv: hep-ex/0602035 [hep-ex]
3 T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), arXiv: 2006.04822 [hep-ph]
4 J. Grange, et al. [Muon g–2], Muon (g–2) technical design report, arXiv: 1501.06858 [physics.ins-det]
5 B. Abi, et al. [Muon g–2], Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126(14), 141801 (2021), arXiv: 2104.03281 [hepex]
6 P. Athron, C. Balázs, D. H. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, New physics expla-nations of a in light of the FNAL muon g–2 measurement, arXiv: 2104.03691 [hep-ph]
7 M. Lindner, M. Platscher, and F. S. Queiroz, Phys. Rep. 731, 1 (2018), arXiv: 1610.06587 [hep-ph]
https://doi.org/10.1016/j.physrep.2017.12.001
8 M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80, 095002 (2009), arXiv: 0811.1030 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.095002
9 J. P. Leveille, The second-order weak correction to (g–2) of the muon in arbitrary gauge models, Nucl. Phys. B 137, 63 (1978)
https://doi.org/10.1016/0550-3213(78)90051-2
10 B. Holdom, Two U(1)’s and ε charge shifts, Phys. Lett. B166, 196 (1986)
https://doi.org/10.1016/0370-2693(86)91377-8
11 H. Davoudiasl, H. S. Lee, and W. J. Marciano, “Dark” Z implications for parity violation, rare meson decays, and Higgs physics, Phys. Rev. D 85, 115019 (2012), arXiv: 1203.2947 [hep-ph]
https://doi.org/10.1103/PhysRevD.85.115019
12 L. L. Everett, G. L. Kane, S. Rigolin, and L. T. Wang, Implications of muon g–2 for supersymmetry and for discovering superpartners directly, Phys. Rev. Lett. 86, 3484 (2001), arXiv: hep-ph/0102145
https://doi.org/10.1103/PhysRevLett.86.3484
13 M. Ibe, T. T. Yanagida, and N. Yokozaki, Muon g–2 and 125 GeV Higgs in split-family supersymmetry, J. High Energy Phys. 2013, 67 (2013), arXiv: 1303.6995 [hep-ph]
https://doi.org/10.1007/JHEP08(2013)067
14 M. Endo, K. Hamaguchi, S. Iwamoto, and N. Yokozaki, Higgs mass, muon g–2, and LHC prospects in gauge mediation models with vectorlike matters, Phys. Rev. D 85, 095012 (2012), arXiv: 1112.5653 [hep-ph]
https://doi.org/10.1103/PhysRevD.85.095012
15 R. Dermisek, K. Hermanek, and N. McGinnis, Highly enhanced contributions of heavy Higgs bosons and new leptons to muon g–2 and prospects at future colliders, Phys. Rev. Lett. 126 (19), 191801 (2021), arXiv: 2011.11812 [hepph]
https://doi.org/10.1103/PhysRevLett.126.191801
16 X. Liu, L. Bian, X. Q. Li, and J. Shu, Type-III two Higgs doublet model plus a pseudoscalar confronted with hμτ, muon g–2 and dark matter, Nucl. Phys. B 909, 507 (2016), arXiv: 1508.05716 [hep-ph]
https://doi.org/10.1016/j.nuclphysb.2016.05.027
17 P. M. Ferreira, B. L. Gonçalves, F. R. Joaquim, and M. Sher, (g–2)μ in the 2HDM and slightly beyond — an updated view, arXiv: 2104.03367 [hep-ph]
18 S. Borsanyi, et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593, 51 (2021), arXiv: 2002.12347 [hep-lat]
https://doi.org/10.1038/s41586-021-03418-1
19 A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Muon g–2 and Δα connection, Phys. Rev. D 102(3), 033002 (2020), arXiv: 2006.12666 [hep-ph]
https://doi.org/10.1103/PhysRevD.102.033002
20 A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Hadronic vacuum polarization: (g–2)μ versus global electroweak fits, Phys. Rev. Lett. 125(9), 091801 (2020), arXiv: 2003.04886 [hep-ph]
https://doi.org/10.1103/PhysRevLett.125.091801
21 P. A. M. Dirac, The quantum theory of electron (part II), Proc. Roy. Soc. Lond. A 118, 351 (1928)
https://doi.org/10.1098/rspa.1928.0056
22 J. S. Schwinger, On Quantum electrodynamics and the magnetic moment of the electron, Phys. Rev. 73, 416 (1948)
https://doi.org/10.1103/PhysRev.73.416
23 P. Kusch and H. M. Foley, The magnetic moment of the electron, Phys. Rev. 74(3), 250 (1948)
https://doi.org/10.1103/PhysRev.74.250
24 T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Complete tenth-order QED contribution to the muon g–2, Phys. Rev. Lett. 109, 111808 (2012), arXiv: 1205.5370 [hep-ph]
https://doi.org/10.1103/PhysRevLett.109.111808
25 C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, The electroweak contributions to (g–2)μ after the Higgs boson mass measurement, Phys. Rev. D 88, 053005 (2013), arXiv: 1306.5546 [hep-ph]
https://doi.org/10.1103/PhysRevD.88.053005
26 M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new evaluation of the hadronic vacuum polarization contributions to the muon anomalous magnetic moment and to α(M2Z), Eur. Phys. J. C 80(3), 241 (2020) [erratum: Eur. Phys. J. C 80(5), 410 (2020)], arXiv: 1908.00921 [hep-ph]
https://doi.org/10.1140/epjc/s10052-020-7857-2
27 A. Keshavarzi, D. Nomura, and T. Teubner, g–2 of charged leptons, α(M2Z), and the hyperfine splitting of muonium, Phys. Rev. D 101(1), 014029 (2020), arXiv: 1911.00367 [hep-ph]
https://doi.org/10.1103/PhysRevD.101.014029
28 R. L. Garwin, L. M. Lederman, and M. Weinrich, Observations of the failure of conservation of parity and charge conjugation in meson decays: The magnetic moment of the free muon, Phys. Rev. 105, 1415 (1957)
https://doi.org/10.1103/PhysRev.105.1415
29 J. Bailey, et al. [CERN-Mainz-Daresbury], Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation, Nucl. Phys. B 150, 1 (1979)
https://doi.org/10.1016/0550-3213(79)90292-X
30 M. Abe, S. Bae, G. Beer, G. Bunce, H. Choi, et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, Prog. Theor. Exp. Phys. 2019(5), 053C02 (2019), arXiv: 1901.03047 [physics.insdet]
31 R. Chislett [Muon g–2], The muon EDM in the g–2 experiment at Fermilab, EP J Web Conf. 118, 01005 (2016)
https://doi.org/10.1051/epjconf/201611801005
32 G. W. Bennett, et al. [Muon (g–2)], An improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009), arXiv: 0811.1207 [hep-ex]
33 A. H. Gomes, A. Kostelecký, and A. J. Vargas, Laboratory tests of Lorentz and CPT symmetry with muons, Phys. Rev. D 90(7), 076009 (2014), arXiv: 1407.7748 [hep-ph]
https://doi.org/10.1103/PhysRevD.90.076009
34 B. Quinn [Muon g–2], CPT- and Lorentz-violation tests with muon g–2, arXiv: 1907.00162 [hep-ex]
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed