Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (1): 12301   https://doi.org/10.1007/s11467-021-1102-9
  本期目录
The geometric phase in nonlinear frequency conversion
Aviv Karnieli1, Yongyao Li2, Ady Arie3
1. Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
2. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
3. School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
 全文: PDF(9844 KB)  
Abstract

The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.

Key wordsnonlinear optics    quasi phase matching    holography    geometric phase    nonlinear metasurfaces    Pancharatnam-Berry phase    frequency conversion
收稿日期: 2021-05-21      出版日期: 2021-08-30
Corresponding Author(s): Ady Arie   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(1): 12301.
Aviv Karnieli, Yongyao Li, Ady Arie. The geometric phase in nonlinear frequency conversion. Front. Phys. , 2022, 17(1): 12301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1102-9
https://academic.hep.com.cn/fop/CN/Y2022/V17/I1/12301
1 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392(1802), 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
2 M. V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light, J. Mod. Opt. 34(11), 1401 (1987)
https://doi.org/10.1080/09500348714551321
3 S. M. Rytov, On transition from wave to geometrical optics, Dokl. Akad. Nauk. USSR 18, 263 (1938)
4 V. V. Vladimirsky, The rotation of a polarization plane for curved light ray, Dokl. Akad. Nauk SSSR 31, 222 (1941)
5 S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. Sect. A 44(5), 247 (1956)
https://doi.org/10.1007/BF03046050
6 M. Berry, Anticipations of the geometric phase, Phys. Today 43(12), 34 (1990)
https://doi.org/10.1063/1.881219
7 R. Y. Chiao and Y.-S. Wu, Manifestations of Berry’s topological phase for the photon, Phys. Rev. Lett. 57(8), 933 (1986)
https://doi.org/10.1103/PhysRevLett.57.933
8 A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
https://doi.org/10.1103/PhysRevLett.57.937
9 N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13, 139 (2014)
https://doi.org/10.1038/nmat3839
10 H. Suchowski, G. Porat, and A. Arie, Adiabatic processes in frequency conversion, Laser Photon. Rev. 8(3), 333 (2014)
https://doi.org/10.1002/lpor.201300107
11 G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)
https://doi.org/10.1038/natrevmats.2017.10
12 J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
https://doi.org/10.1103/PhysRevLett.62.2747
13 J. von Bergmann and H. C. von Bergmann, Foucault pendulum through basic geometry, Am. J. Phys. 75(10), 888 (2007)
https://doi.org/10.1119/1.2757623
14 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
15 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
16 B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
https://doi.org/10.1515/9781400846733
17 E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond, Nat. Rev. Phys. 1, 437 (2019)
https://doi.org/10.1038/s42254-019-0071-1
18 J. Anandan, The geometric phase, Nature 360(6402), 307 (1992)
https://doi.org/10.1038/360307a0
19 B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51(24), 2167 (1983)
https://doi.org/10.1103/PhysRevLett.51.2167
20 J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Addison-Wesley, 2011
21 Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
22 J. Samuel and R. Bhandari, General setting for Berry’s phase, Phys. Rev. Lett. 60(23), 2339 (1988)
https://doi.org/10.1103/PhysRevLett.60.2339
23 Z. Zhou, Y. Margalit, S. Moukouri, Y. Meir, and R. Folman, An experimental test of the geodesic rule proposition for the noncyclic geometric phase, Sci. Adv. 6(9), eaay8345 (2020)
https://doi.org/10.1126/sciadv.aay8345
24 R. Bhandari and J. Samuel, Observation of topological phase by use of a laser interferometer, Phys. Rev. Lett. 60(13), 1211 (1988)
https://doi.org/10.1103/PhysRevLett.60.1211
25 T. H. Chyba, R. Simon, L. J. Wang, and L. Mandel, Measurement of the Pancharatnam phase for a light beam, Opt. Lett. 13(7), 562 (1988)
https://doi.org/10.1364/OL.13.000562
26 Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Space-variant Pancharatnam-Berry phase optical elements with computergenerated subwavelength gratings, Optics Lett. 27(13), 1141 (2002)
https://doi.org/10.1364/OL.27.001141
27 E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
https://doi.org/10.1063/1.1539300
28 X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency, Adv. Mater. 27(7), 1195 (2015)
https://doi.org/10.1002/adma.201405047
29 S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, Guiding light via geometric phases, Nat. Photon. 10(9), 571 (2016)
https://doi.org/10.1038/nphoton.2016.138
30 K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photon. 9,796 (2015)
https://doi.org/10.1038/nphoton.2015.201
31 R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light, Science 358(6365), 896 (2017)
https://doi.org/10.1126/science.aao5392
32 L. Marrucci, C. Manzo, and D. Paparo, Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation, Appl. Phys. Lett. 88(22), 221102 (2006)
https://doi.org/10.1063/1.2207993
33 G. Biener, A. Niv, V. Kleiner, and E. Hasman, Formation of helical beams by use of Pancharatnam-Berry phase optical elements, Opt. Lett. 27(21), 1875 (2002)
https://doi.org/10.1364/OL.27.001875
34 F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. De Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
https://doi.org/10.1126/sciadv.1500087
35 J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, Nonlinear physical optics with transversely patterned quasi-phase-matching gratings, IEEE J. Sel. Top. Quantum Electron. 8(3), 660 (2002)
https://doi.org/10.1109/JSTQE.2002.1016370
36 A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twodimensional nonlinear beam shaping, Opt. Lett. 37(11), 2136 (2012)
https://doi.org/10.1364/OL.37.002136
37 A. Shapira, I. Juwiler, and A. Arie, Tunable nonlinear beam shaping by non-collinear interactions, Laser Photon. Rev. 7(4), L25 (2013)
https://doi.org/10.1002/lpor.201300026
38 B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, 2D wave-front shaping in optical superlattices using nonlinear volume holography, Opt. Lett. 41(13), 2927 (2016)
https://doi.org/10.1364/OL.41.002927
39 N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twisting light by nonlinear photonic crystals, Phys. Rev. Lett. 108(23), 233902 (2012)
https://doi.org/10.1103/PhysRevLett.108.233902
40 S. Trajtenberg-Mills, I. Juwiler, and A. Arie, On-axis shaping of second-harmonic beams, Laser Photon. Rev. 9(6), L40 (2015)
https://doi.org/10.1002/lpor.201500154
41 Y. Ming, J. Tang, Z.-X. Chen, F. Xu, L.-J. Zhang, and Y.-Q. Lu, Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal, IEEE J. Sel. Top. Quantum Electron. 21(3), 225 (2015)
https://doi.org/10.1109/JSTQE.2014.2382977
42 T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nonlinear generation and manipulation of airy beams, Nat. Photon. 3(7), 395 (2009)
https://doi.org/10.1038/nphoton.2009.95
43 J. Imbrock, L. Wesemann, S. Kroesen, M. Ayoub, and C. Denz, Waveguide integrated three-dimensional quasiphase-matching structures, Optica 7(1), 28 (2020)
https://doi.org/10.1364/OPTICA.7.000028
44 S. Liu, K. Switkowski, C. Xu, J. Tian, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals, Nat. Commun. 10(1), 3208 (2019)
https://doi.org/10.1038/s41467-019-11114-y
45 P. Mandel, P. Galatola, L. A. Lugiato, and K. G. Wang, Berry phase analogies in nonlinear optics, Opt. Commun. 80(3–4), 262 (1991)
https://doi.org/10.1016/0030-4018(91)90263-D
46 M. S. Alber, G. G. Luther, J. E. Marsden, and J. M. Robbins, Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction, Physica D 123(1–4), 271 (1998)
https://doi.org/10.1016/S0167-2789(98)00127-4
47 V. Y. Toronov and V. L. Derbov, Geometric phases in lasers and liquid flows, Phys. Rev. A 49(2), 1392 (1994)
https://doi.org/10.1103/PhysRevA.49.1392
48 J. C. Garrison and R. Y. Chiao, Geometrical phases from global gauge invariance of nonlinear classical field theories, Phys. Rev. Lett. 60(3), 165 (1988)
https://doi.org/10.1103/PhysRevLett.60.165
49 J. Liu and L. B. Fu, Berry phase in nonlinear systems, Phys. Rev. A 81(5), 052112 (2010)
https://doi.org/10.1103/PhysRevA.81.052112
50 L. D. Zhang, L. B. Fu, and J. Liu, Adiabatic geometric phase in the nonlinear coherent coupler, Eur. Phys. J. D 65(3), 557 (2011)
https://doi.org/10.1140/epjd/e2011-20517-1
51 J. Liu, S. C. Li, L. B. Fu, and D. F. Ye, Nonlinear Adiabatic Evolution of Quantum Systems, in:Nonlinear Adiabatic Evolution of Quantum Systems, pp 49–72, Springer Singapore, 2018
https://doi.org/10.1007/978-981-13-2643-1_2
52 G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media, J. Opt. Soc. Am. B 17(6), 932 (2000)
https://doi.org/10.1364/JOSAB.17.000932
53 H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Geometrical representation of sum frequency generation and adiabatic frequency conversion, Phys. Rev. A 78(6), 063821 (2008)
https://doi.org/10.1103/PhysRevA.78.063821
54 H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Robust adiabatic sum frequency conversion, Opt. Express 17(15), 12731 (2009)
https://doi.org/10.1364/OE.17.012731
55 P. Krogen, H. Suchowski, H. Liang, N. Flemens, K. H. Hong, F. X. Kärtner, and J. Moses, Generation and multioctave shaping of mid-infrared intense single-cycle pulses, Nat. Photon. 11(4), 222 (2017)
https://doi.org/10.1038/nphoton.2017.34
56 X. Ding, D. Heberle, K. Harrington, N. Flemens, W. Z. Chang, T. A. Birks, and J. Moses, Observation of rapid adiabatic passage in optical four-wave mixing, Phys. Rev. Lett. 124, 153902 (2020)
https://doi.org/10.1103/PhysRevLett.124.153902
57 E. Bahar, X. Ding, A. Dahan, H. Suchowski, and J. Moses, Adiabatic four-wave mixing frequency conversion, Opt. Express 26(20), 25582 (2018)
https://doi.org/10.1364/OE.26.025582
58 K. Wang, Y. Shi, A. S. Solntsev, S. Fan, A. A. Sukhorukov, and D. N. Neshev, Non-reciprocal geometric phase in nonlinear frequency conversion, Opt. Lett. 42(10), 1990 (2017)
https://doi.org/10.1364/OL.42.001990
59 A. Karnieli and A. Arie, Fully controllable adiabatic geometric phase in nonlinear optics, Opt. Express 26(4), 4920 (2018)
https://doi.org/10.1364/OE.26.004920
60 A. Karnieli, S. Trajtenberg-Mills, G. Di Domenico, and A. Arie, Experimental observation of the geometric phase in nonlinear frequency conversion, Optica 6(11), 1401 (2019)
https://doi.org/10.1364/OPTICA.6.001401
61 Y. Li, O. Yesharim, I. Hurvitz, A. Karnieli, S. Fu, G. Porat, and A. Arie, Adiabatic geometric phase in fully nonlinear three-wave mixing, Phys. Rev. A101(3), 033807 (2020)
https://doi.org/10.1103/PhysRevA.101.033807
62 Y. Li, J. Lü, S. Fu, and A. Arie, Geometric representation and the adiabatic geometric phase in four-wave mixing processes, Opt. Express 29(5), 7288 (2021)
https://doi.org/10.1364/OE.416186
63 N. Westerberg, C. Maitland, D. Faccio, K. Wilson, P. Öhberg, and E. M. Wright, Synthetic magnetism for photon fluids, Phys. Rev. A94(2), 023805 (2016)
https://doi.org/10.1103/PhysRevA.94.023805
64 A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect, Nat. Commun. 12(1), 1092 (2021)
https://doi.org/10.1038/s41467-021-21250-z
65 A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Optical skyrmions and a topological Hall effect in artificial gauge fields, in:CLEO: QELS_Fundamental Science, p. FW4A.6, 2020
https://doi.org/10.1364/CLEO_QELS.2020.FW4A.6
66 D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
https://doi.org/10.1063/1.5142397
67 R. W. Boyd, Nonlinear Optics, Academic Press, 2008
68 P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8(1), 21 (1962)
https://doi.org/10.1103/PhysRevLett.8.21
69 E. Rozenberg and A. Arie, Broadband and robust adiabatic second harmonic generation by temperature gradient in birefringently phase matched lithium triborate crystal, Opt. Lett. 44(13), 3358 (2019)
https://doi.org/10.1364/OL.44.003358
70 M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett. 62(5), 435 (1993)
https://doi.org/10.1063/1.108925
71 T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. Yu, H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate, Nat. Photon. 12(10), 591 (2018)
https://doi.org/10.1038/s41566-018-0225-1
72 D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal, Nat. Photon. 12(10), 596 (2018)
https://doi.org/10.1038/s41566-018-0240-2
73 S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, Intermodal fourwave mixing in silicon waveguides, Photon. Res. 6(8), 805 (2018)
https://doi.org/10.1364/PRJ.6.000805
74 X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, Ferroelectric domain engineering by focused infrared femtosecond pulses, Appl. Phys. Lett. 107(14), 141102 (2015)
https://doi.org/10.1063/1.4932199
75 X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides, Opt. Lett. 41(11), 2410 (2016)
https://doi.org/10.1364/OL.41.002410
76 S. Keren-Zur and T. Ellenbogen, A new dimension for nonlinear photonic crystals, Nat. Photon. 12, 575 (2018)
https://doi.org/10.1038/s41566-018-0262-9
77 W. H. Lee, Binary computer-generated holograms, Appl. Opt. 18(21), 3661 (1979)
https://doi.org/10.1364/AO.18.003661
78 A. Shapira, I. Juwiler, and A. Arie, Nonlinear computergenerated holograms, Opt. Lett. 36(15), 3015 (2011)
https://doi.org/10.1364/OL.36.003015
79 A. Shapira, L. Naor, and A. Arie, Nonlinear optical holograms for spatial and spectral shaping of light waves, Sci. Bull. (Beijing) 60(16), 1403 (2015)
https://doi.org/10.1007/s11434-015-0855-3
80 S. Trajtenebrg-Mills and A. Arie, Shaping light beams in nonlinear processes using structured light and patterned crystals, Opt. Mater. Express 7(8), 2928 (2017)
https://doi.org/10.1364/OME.7.002928
81 G. Imeshev, M. Proctor, and M. M. Fejer, Lateral patterning of nonlinear frequency conversion with radially varying quasi-phase-matching gratings, Opt. Lett. 23(9), 673 (1998)
https://doi.org/10.1364/OL.23.000673
82 S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, Multiorder nonlinear diffraction in frequency doubling processes, Opt. Lett. 34(6), 848 (2009)
https://doi.org/10.1364/OL.34.000848
83 T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, Nonlinear photonic structures for all-optical deflection, Opt. Express 16(5), 3077 (2008)
https://doi.org/10.1364/OE.16.003077
84 K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals, Opt. Lett. 38(24), 5470 (2013)
https://doi.org/10.1364/OL.38.005470
85 B. Zhu, H. Liu, Y. Chen, and X. Chen, High conversion efficiency second-harmonic beam shaping via amplitudetype nonlinear photonic crystals, Opt. Lett. 45(1), 220 (2020)
https://doi.org/10.1364/OL.45.000220
86 D. Liu, S. Liu, L. M. Mazur, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Smart optically induced nonlinear photonic crystals for frequency conversion and control, Appl. Phys. Lett. 116(5), 051104 (2020)
https://doi.org/10.1063/1.5141420
87 B. Zhu, H. Liu, Y. Liu, X. Yan, Y. Chen, and X. Chen, Secondharmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining, Opt. Lett. 45(15), 4132 (2020)
https://doi.org/10.1364/OL.394162
88 A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, Dynamic control of light beams in second harmonic generation, Opt. Lett. 40(9), 1944 (2015)
https://doi.org/10.1364/OL.40.001944
89 T. Ellenbogen, I. Dolev, and A. Arie, Mode conversion in quadratic nonlinear crystals, Opt. Lett. 33(11), 1207 (2008)
https://doi.org/10.1364/OL.33.001207
90 Y. Z. Zhi, Y. Li, S. D. Dong, K. J. Yun, W. Zhang, S. Shi, S. S. Bao, and C. G. Guang, Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals, Sci. Rep. 4(1), 1 (2014)
https://doi.org/10.1038/srep05650
91 Y. Qin, C. Zhang, Y. Zhu, X. Hu, and G. Zhao, Wavefront engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures, Phys. Rev. Lett. 100(6), 063902 (2008)
https://doi.org/10.1103/PhysRevLett.100.063902
92 H. H. Xu, B. Yang, C. Zhang, Q. Q. Yi, and Y. Z. Yong, Nonlinear volume holography for wave-front engineering, Phys. Rev. Lett. 113(16), 163902 (2014)
https://doi.org/10.1103/PhysRevLett.113.163902
93 I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals, Appl. Phys. Lett. 95, 201112 (2009)
https://doi.org/10.1063/1.3266066
94 I. Dolev, A. Libster, and A. Arie, Selfaccelerating parabolic beams in quadratic nonlinear media, Appl. Phys. Lett. 101(10), 101109 (2012)
https://doi.org/10.1063/1.4748979
95 I. Dolev and A. Arie, Three wave mixing of airy beams in a quadratic nonlinear photonic crystals, Appl. Phys. Lett. 97(17), 171102 (2010)
https://doi.org/10.1063/1.3504247
96 I. Dolev, T. Ellenbogen, and A. Arie, Switching the acceleration direction of Airy beams by a nonlinear optical process, Opt. Lett. 35(10), 1581 (2010)
https://doi.org/10.1364/OL.35.001581
97 I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, Experimental observation of self-accelerating beams in quadratic nonlinear media, Phys. Rev. Lett. 108(11), 113903 (2012)
https://doi.org/10.1103/PhysRevLett.108.113903
98 S. Trajtenberg-Mills, I. Juwiler, and A. Arie, Generation of second-harmonic beams with switchable curved trajectories, Optica 4(1), 153 (2017)
https://doi.org/10.1364/OPTICA.4.000153
99 D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, Diffraction interference induced superfocusing in nonlinear Talbot effect, Sci. Rep. 4, 6134 (2014)
https://doi.org/10.1038/srep06134
100 G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, Ultrashortpulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: Pulse compression and shaping, J. Opt. Soc. Am. B 17(2), 304 (2000)
https://doi.org/10.1364/JOSAB.17.000304
101 C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media, Opt. Express 24(14), 15940 (2016)
https://doi.org/10.1364/OE.24.015940
102 R. Shiloh and A. Arie, Spectral and temporal holograms with nonlinear optics, Opt. Lett. 37(17), 3591 (2012)
https://doi.org/10.1364/OL.37.003591
103 A. Leshem, R. Shiloh, and A. Arie, Experimental realization of spectral shaping using nonlinear optical holograms, Opt. Lett. 39(18), 5370 (2014)
https://doi.org/10.1364/OL.39.005370
104 R. Remez and A. Arie, Super-narrow frequency conversion, Optica 2(5), 472 (2015)
https://doi.org/10.1364/OPTICA.2.000472
105 J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Quasi-phase-matching engineering for spatial control of entangled twophoton states, Opt. Lett. 29(4), 376 (2004)
https://doi.org/10.1364/OL.29.000376
106 S. Trajtenberg‐Mills, A. Karnieli, N. Voloch‐Bloch, E. Megidish, H. S. Eisenberg, and A. Arie, Simulating correlations of structured spontaneously down‐converted photon pairs, Laser Photon. Rev. 14(3), 1900321 (2020)
https://doi.org/10.1002/lpor.201900321
107 H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, On-chip steering of entangled photons in nonlinear photonic crystals, Nat. Commun. 2(1), 429 (2011)
https://doi.org/10.1038/ncomms1439
108 E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, Compact 2D nonlinear photonic crystal source of beamlike path entangled photons, Opt. Express 21(6), 6689 (2013)
https://doi.org/10.1364/OE.21.006689
109 L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, Orbital angular momentum entanglement via forkpoling nonlinear photonic crystals, Opt. Express 23(2), 1203 (2015)
https://doi.org/10.1364/OE.23.001203
110 H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal, Phys. Rev. Lett. 111(2), 023603 (2013)
https://doi.org/10.1103/PhysRevLett.111.023603
111 A. Bahabad and A. Arie, Generation of optical vortex beams by nonlinear wave mixing, Opt. Express 15(26), 17619 (2007)
https://doi.org/10.1364/OE.15.017619
112 Y. Zhang, Y. Sheng, S. Zhu, M. Xiao, and W. Krolikowski, Nonlinear photonic crystals: From 2D to 3D, Optica 8(3), 372 (2021)
https://doi.org/10.1364/OPTICA.416619
113 S. Liu, L. M. Mazur, W. Krolikowski, and Y. Sheng, Nonlinear volume holography in 3D nonlinear photonic crystals, Laser Photon. Rev. 14(11), 2000224 (2020)
https://doi.org/10.1002/lpor.202000224
114 D. Wei, C. Wang, X. Xu, H. Wang, Y. Hu, P. Chen, J. Li, Y. Zhu, C. Xin, X. Hu, Y. Zhang, D. Wu, J. Chu, S. Zhu, and M. Xiao, Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals, Nat. Commun. 10(1), 4193 (2019)
https://doi.org/10.1038/s41467-019-12251-0
115 A. Rangelov and S. Longhi, Nonlinear adiabatic optical isolator, Appl. Opt. 56(11), 2991 (2017)
https://doi.org/10.1364/AO.56.002991
116 K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, Linear isolators using wavelength conversion, Optica 7(3), 209 (2020)
https://doi.org/10.1364/OPTICA.385639
117 A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, Broadband and efficient adiabatic threewave-mixing in a temperaturecontrolled bulk crystal, Opt. Express 26(4), 4448 (2018)
https://doi.org/10.1364/OE.26.004448
118 T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
https://doi.org/10.1103/RevModPhys.91.015006
119 L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photon. 8(11), 821 (2014)
https://doi.org/10.1038/nphoton.2014.248
120 G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan Demetrios, N. Christodoulides, and M. Sege, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
https://doi.org/10.1126/science.aar4003
121 B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
https://doi.org/10.1126/science.aao4551
122 S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
https://doi.org/10.1126/science.aba8725
123 Y. Wang, L. J. Lang, H. L. Ching, B. Zhang, and Y. D. Chong, Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial, Nat. Commun. 10(1), 1102 (2019)
https://doi.org/10.1038/s41467-019-08966-9
124 S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear light generation in topological nanostructures, Nat. Nanotechnol. 14(2), 126 (2019)
https://doi.org/10.1038/s41565-018-0324-7
125 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Realspace observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
https://doi.org/10.1038/nature09124
126 A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
https://doi.org/10.1038/natrevmats.2017.31
127 A. Karnieli and A. Arie, All-optical Stern-Gerlach effect, Phys. Rev. Lett. 120(5), 053901 (2018)
https://doi.org/10.1103/PhysRevLett.120.053901
128 A. Karnieli and A. Arie, Frequency domain Stern-Gerlach effect for photonic qubits and qutrits, Optica 5(10), 1297 (2018)
https://doi.org/10.1364/OPTICA.5.001297
129 P. Bruno, V. K. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)
https://doi.org/10.1103/PhysRevLett.93.096806
130 A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Topological Hall effect in the a phase of MnSi, Phys. Rev. Lett. 102(18), 186602 (2009)
https://doi.org/10.1103/PhysRevLett.102.186602
131 N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe, Phys. Rev. Lett. 106(15), 156603 (2011)
https://doi.org/10.1103/PhysRevLett.106.156603
132 K. Everschor-Sitte and M. Sitte, Realspace Berry phases: Skyrmion soccer, J. Appl. Phys. 115(17), 172602 (2014)
https://doi.org/10.1063/1.4870695
133 J. Ping Liu, Z. Zhang, and G. Zhao, Skyrmions: Topological Structures, Properties, and Applications, CRC Press, 2016
134 G. Porat and A. Arie, Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic threewave mixing, J. Opt. Soc. Am. B 30(5), 1342 (2013)
https://doi.org/10.1364/JOSAB.30.001342
135 C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, Apodization of chirped quasi-phasematching devices, J. Opt. Soc. Am. B 30(6), 1551 (2013)
https://doi.org/10.1364/JOSAB.30.001551
136 C. R. Phillips and M. M. Fejer, Adiabatic optical parametric oscillators: Steady-state and dynamical behavior, Opt. Express 20(3), 2466 (2012)
https://doi.org/10.1364/OE.20.002466
137 C. R. Phillips and M. M. Fejer, Efficiency and phase of optical parametric amplification in chirped quasi-phasematched gratings, Opt. Lett. 35(18), 3093 (2010)
https://doi.org/10.1364/OL.35.003093
138 C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on a periodically poled Mg:LiNbO3, Opt. Lett. 35(14), 2340 (2010)
https://doi.org/10.1364/OL.35.002340
139 C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Role of apodization in optical parametric amplifiers based on aperiodic quasi-phase matching gratings, Opt. Express 20(16), 18066 (2012)
https://doi.org/10.1364/OE.20.018066
140 C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, 75 MW few-cycle midinfrared pulses from a collinear apodized APPLN-based OPCPA, Opt. Express 20(24), 26888 (2012)
https://doi.org/10.1364/OE.20.026888
141 O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, Complete energy conversion by autoresonant three-wave mixing in nonuniform media, Opt. Express 21(2), 1623 (2013)
https://doi.org/10.1364/OE.21.001623
142 O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium, J. Opt. Soc. Am. B 30(6), 1637 (2013)
https://doi.org/10.1364/JOSAB.30.001637
143 J. T. Lü, F. Y. Zhao, W. Pang, and Y. Y. Li, Constant adiabatic geometric phase in three-wave mixing under different depletion levels, Phys. Lett. A 397, 127266 (2021)
https://doi.org/10.1016/j.physleta.2021.127266
144 F. Y. Zhao, J. T. Lü, H. X. He, Y. G. Zhou, S. H. Fu, and Y. Y. Li, Geometric phase with full-wedge and half-wedge rotation in nonlinear frequency conversion, Opt. Express 29(14), 21820 (2021)
https://doi.org/10.1364/OE.428485
145 J. Liu, B. Wu, and Q. Niu, Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90(17), 170404 (2003)
https://doi.org/10.1103/PhysRevLett.90.170404
146 N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals, Nat. Photon. 9(3), 180 (2015)
https://doi.org/10.1038/nphoton.2015.17
147 S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, Nonlinear beam shaping with plasmonic metasurfaces, ACS Photon. 3(1), 117 (2016)
https://doi.org/10.1021/acsphotonics.5b00528
148 X. L. Gui, M. C. Shu, Y. Cai, S. Zhang, and K. W. Cheah, Third harmonic generation of optical vortices using holography-based Gold-Fork microstructure, Adv. Opt. Mater. 2(4), 389 (2014)
https://doi.org/10.1002/adom.201300496
149 E. Almeida, G. Shalem, and Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces, Nat. Commun. 7(1), 10367 (2016)
https://doi.org/10.1038/ncomms10367
150 L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear wavefront control with all-dielectric metasurfaces, Nano Lett. 18(6), 3978 (2018)
https://doi.org/10.1021/acs.nanolett.8b01460
151 E. Almeida, O. Bitton, and Y. Prior, Nonlinear metamaterials for holography, Nat. Commun. 7(1), 12533 (2016)
https://doi.org/10.1038/ncomms12533
152 C. Schlickriede, S. S. Kruk, L. Wang, B. Sain, Y. Kivshar, and T. Zentgraf, Nonlinear imaging with alldielectric metasurfaces, Nano Lett. 20(6), 4370 (2020)
https://doi.org/10.1021/acs.nanolett.0c01105
153 S. Keren-Zur, M. Tal, S. Fleischer, D. M. Mittleman, and T. Ellenbogen, Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces, Nat. Commun. 10(1), 1778 (2019)
https://doi.org/10.1038/s41467-019-09811-9
154 Y. Gao, Y. Fan, Y. Wang, W. Yang, Q. Song, and S. Xiao, Nonlinear holographic all-dielectric metasurfaces, Nano Lett. 18(12), 8054 (2018)
https://doi.org/10.1021/acs.nanolett.8b04311
155 A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear metasurfaces: A paradigm shift in nonlinear optics, Mater. Today 21(1), 8 (2018)
https://doi.org/10.1016/j.mattod.2017.06.007
156 B. Sain, C. Meier, and T. Zentgraf, Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review, Adv. Photon. 1(02), 1 (2019)
https://doi.org/10.1117/1.AP.1.2.024002
157 S. Keren-Zur, L. Michaeli, H. Suchowski, and T. Ellenbogen, Shaping light with nonlinear metasurfaces, Adv. Opt. Photon. 10(1), 309 (2018)
https://doi.org/10.1364/AOP.10.000309
158 T. Huang, X. Zhao, S. Zeng, A. Crunteanu, P. P. Shum, and N. Yu, Planar nonlinear metasurface optics and their applications, Rep. Prog. Phys. 83(12), 126101 (2020)
https://doi.org/10.1088/1361-6633/abb56e
159 C. Gigli, G. Marino, A. Artioli, D. Rocco, C. De Angelis, J. Claudon, J. M. Gérard, and G. Leo, Tensorial phase control in nonlinear meta-optics, Optica 8(2), 269 (2021)
https://doi.org/10.1364/OPTICA.413329
160 N. Nookala, J. Lee, M. Tymchenko, J. Sebastian Gomez-Diaz, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M. C. Amann, A. Alù, and M. Belkin, Ultrathin gradient nonlinear metasurface with a giant nonlinear response, Optica 3(3), 283 (2016)
https://doi.org/10.1364/OPTICA.3.000283
161 N. Bloembergen and P. S. Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128(2), 606 (1962)
https://doi.org/10.1103/PhysRev.128.606
162 N. Bloembergen, Surface nonlinear optics: A historical overview, Appl. Phys. B 68(3), 289 (1999)
https://doi.org/10.1007/s003400050621
163 M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Second-harmonic generation from magnetic metamaterials, Science 313(5786), 502 (2006)
https://doi.org/10.1126/science.1129198
164 S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, and W. Cai, Nonlinear imaging and spectroscopy of chiral metamaterials, Adv. Mater. 26(35), 6157 (2014)
https://doi.org/10.1002/adma.201402293
165 R. Hou, V. Shynkar, C. Lafargue, R. Kolkowski, J. Zyss, and F. Lagugné-Labarthet, Second harmonic generation from gold meta-molecules with three-fold symmetry, Phys. Chem. Chem. Phys. 18(11), 7956 (2016)
https://doi.org/10.1039/C6CP00154H
166 A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, Size and shape resonances in second harmonic generation from silver nanocavities, J. Phys. Chem. C 117(43), 22377 (2013)
https://doi.org/10.1021/jp403010q
167 V. K. Valev, Characterization of nanostructured plasmonic surfaces with second harmonic generation, Langmuir 28(44), 15454 (2012)
https://doi.org/10.1021/la302485c
168 J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature 511(7507), 65 (2014)
https://doi.org/10.1038/nature13455
169 H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, Metamaterials with tailored nonlinear optical response, Nano Lett. 12(2), 673 (2012)
https://doi.org/10.1021/nl203524k
170 V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, Plasmonic ratchet wheels: Switching circular dichroism by arranging chiral nanostructures, Nano Lett. 9(11), 3945 (2009)
https://doi.org/10.1021/nl9021623
171 K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, Predicting nonlinear properties of metamaterials from the linear response, Nat. Mater. 14(4), 379 (2015)
https://doi.org/10.1038/nmat4214
172 H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, Third-harmonic upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna, Nat. Nanotechnol. 9(4), 290 (2014)
https://doi.org/10.1038/nnano.2014.27
173 M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers, Opt. Mater. Express 1(1), 46 (2011) (Invited)
https://doi.org/10.1364/OME.1.000046
174 S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Collective effects in secondharmonic generation from splitring-resonator arrays, Phys. Rev. Lett. 109(1), 015502 (2012)
https://doi.org/10.1103/PhysRevLett.109.015502
175 K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, Polarization-controlled circular second harmonic generation from metal hole arrays with threefold rotational symmetry, Phys. Rev. Lett. 112(13), 135502 (2014)
https://doi.org/10.1103/PhysRevLett.112.135502
176 S. Chen, G. Li, F. Zeuner, W. H. Wong, Y. B. P. Edwin, T. Zentgraf, K. W. Cheah, and S. Zhang, Symmetry-selective third-harmonic generation from plasmonic metacrystals, Phys. Rev. Lett. 113(3), 033901 (2014)
https://doi.org/10.1103/PhysRevLett.113.033901
177 L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, Nonlinear surface lattice resonance in plasmonic nanoparticle arrays, Phys. Rev. Lett. 118(24), 243904 (2017)
https://doi.org/10.1103/PhysRevLett.118.243904
178 Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, Nonlinear fano-resonant dielectric metasurfaces, Nano Lett. 15(11), 7388 (2015)
https://doi.org/10.1021/acs.nanolett.5b02802
179 M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response, Nano Lett. 14(11), 6488 (2014)
https://doi.org/10.1021/nl503029j
180 W. Cai, A. P. Vasudev, and M. L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics, Science 333(6050), 1720 (2011)
https://doi.org/10.1126/science.1207858
181 R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements, Phys. Rev. Lett. 110(9), 093902 (2013)
https://doi.org/10.1103/PhysRevLett.110.093902
182 P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings, Nano Lett. 10(12), 4880 (2010)
https://doi.org/10.1021/nl102747v
183 J. Renger, R. Quidant, N. Van Hulst, and L. Novotny, Surface-enhanced nonlinear four-wave mixing, Phys. Rev. Lett. 104(4), 046803 (2010)
https://doi.org/10.1103/PhysRevLett.104.046803
184 Z. Lin, L. Huang, T. X. Zhen, X. Li, T. Zentgraf, and Y. Wang, Four-wave mixing holographic multiplexing based on nonlinear metasurfaces, Adv. Opt. Mater. 7(21), 1900782 (2019)
https://doi.org/10.1002/adom.201900782
185 O. Wolf, S. Campione, A. Benz, A. P. Ravikumar, S. Liu, T. S. Luk, E. A. Kadlec, E. A. Shaner, J. F. Klem, M. B. Sinclair, and I. Brener, Phased-array sources based on nonlinear metamaterial nanocavities, Nat. Commun. 6(1), 7667 (2015)
https://doi.org/10.1038/ncomms8667
186 R. Kolkowski, L. Petti, M. Rippa, C. Lafargue, and J. Zyss, Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale, ACS Photon. 2(7), 899 (2015)
https://doi.org/10.1021/acsphotonics.5b00090
187 R. Camacho-Morales, M. Rahmani, S. Kruk, L. Wang, L. Xu, D. A. Smirnova, A. S. Solntsev, A. Miroshnichenko, H. H. Tan, F. Karouta, S. Naureen, K. Vora, L. Carletti, C. De Angelis, C. Jagadish, Y. S. Kivshar, and D. N. Neshev, Nonlinear generation of vector beams from AlGaAs nanoantennas, Nano Lett. 16(11), 7191 (2016)
https://doi.org/10.1021/acs.nanolett.6b03525
188 G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Continuous control of the nonlinearity phase for harmonic generations, Nat. Mater. 14, 607 (2015)
https://doi.org/10.1038/nmat4267
189 M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Gradient nonlinear Pancharatnam–Berry metasurfaces, Phys. Rev. Lett. 115(20), 207403 (2015)
https://doi.org/10.1103/PhysRevLett.115.207403
190 F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, Ultrathin nonlinear metasurface for optical image encoding, Nano Lett. 17(5), 3171 (2017)
https://doi.org/10.1021/acs.nanolett.7b00676
191 M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Advanced control of nonlinear beams with Pancharatnam–Berry metasurfaces, Phys. Rev. B 94(21), 214303 (2016)
https://doi.org/10.1103/PhysRevB.94.214303
192 N. Shitrit, J. Kim, D. S. Barth, H. Ramezani, Y. Wang, and X. Zhang, Asymmetric free-space light transport at nonlinear metasurfaces, Phys. Rev. Lett. 121(4), 046101 (2018)
https://doi.org/10.1103/PhysRevLett.121.046101
193 S. D. Gennaro, Y. Li, S. A. Maier, and R. F. Oulton, Nonlinear Pancharatnam-Berry phase metasurfaces beyond the dipole approximation, ACS Photon. 6(9), 2335 (2019)
https://doi.org/10.1021/acsphotonics.9b00877
194 C. McDonnell, J. Deng, S. Sideris, T. Ellenbogen, and G. Li, Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces, Nat. Commun. 12(1), 30 (2021)
https://doi.org/10.1038/s41467-020-20283-0
195 G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation, Nano Lett. 17(12), 7974 (2017)
https://doi.org/10.1021/acs.nanolett.7b04451
196 B. Liu, B. Sain, B. Reineke, R. Zhao, C. Meier, L. Huang, Y. Jiang, and T. Zentgraf, Nonlinear wavefront control by geometric-phase dielectric metasurfaces: Influence of mode field and rotational symmetry, Adv. Opt. Mater. 8(9), 1902050 (2020)
https://doi.org/10.1002/adom.201902050
197 W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, W. Q. Cheng, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7(1), 11930 (2016)
https://doi.org/10.1038/ncomms11930
198 Y. Tang, Y. Intaravanne, J. Deng, K. F. Li, X. Chen, and G. Li, Nonlinear vectorial metasurface for optical encryption, Phys. Rev. Appl. 10(2), 024028 (2019)
https://doi.org/10.1103/PhysRevApplied.12.024028
199 C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, Imaging through nonlinear metalens using second harmonic generation, Adv. Mater. 30(8), 1703843 (2018)
https://doi.org/10.1002/adma.201703843
200 B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography, Nano Lett. 19(9), 6585 (2019)
https://doi.org/10.1021/acs.nanolett.9b02844
201 L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: From fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
https://doi.org/10.1515/nanoph-2017-0118
202 S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces, Nanophotonics 7(6), 1013 (2018)
https://doi.org/10.1515/nanoph-2018-0011
203 Z. L. Deng and G. Li, Metasurface optical holography, Mater. Today Phys. 3, 16 ( 2017)
https://doi.org/10.1016/j.mtphys.2017.11.001
204 T. Stolt, J. Kim, S. Héron, A. Vesala, Y. Yang, J. Mun, M. Kim, M. J. Huttunen, R. Czaplicki, M. Kauranen, J. Rho, and P. Genevet, Backward phase-matched secondharmonic generation from stacked metasurfaces, Phys. Rev. Lett. 126(3), 033901 (2021)
https://doi.org/10.1103/PhysRevLett.126.033901
205 T. Santiago-Cruz, A. Fedotova, V. Sultanov, M. A. Weissflog, D. Arslan, M. Younesi, T. Pertsch, I. Staude, F. Setzpfandt, and M. Chekhova, Photon pairs from resonant metasurfaces, Nano Lett. 21(10), 4423 (2021)
https://doi.org/10.1021/acs.nanolett.1c01125
206 A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, Metasurfaces for quantum photonics, Nat. Photon. 15, 327 (2021)
https://doi.org/10.1038/s41566-021-00793-z
207 C. Okoth, A. Cavanna, T. Santiago-Cruz, and M. V. Chekhova, Microscale generation of entangled photons without momentum conservation, Phys. Rev. Lett. 123(26), 263602 (2019)
https://doi.org/10.1103/PhysRevLett.123.263602
208 L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, and D. P. Tsai, Metalens-array-based high-dimensional and multiphoton quantum source, Science 368(6498), 1487 (2020)
https://doi.org/10.1126/science.aba9779
209 G. Marino, A. S. Solntsev, L. Xu, V. F. Gili, L. Carletti, A. N. Poddubny, M. Rahmani, D. A. Smirnova, H. Chen, A. Lemaître, G. Zhang, A. V. Zayats, C. De Angelis, G. Leo, A. A. Sukhorukov, and D. N. Neshev, Spontaneous photon-pair generation from a dielectric nanoantenna, Optica 6(11), 1416 (2019)
https://doi.org/10.1364/OPTICA.6.001416
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed