Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (2): 21501   https://doi.org/10.1007/s11467-021-1103-8
  本期目录
Measurement-based entanglement purification for entangled coherent states
Pei-Shun Yan1,3,4, Lan Zhou2, Wei Zhong1,4, Yu-Bo Sheng1,3,4()
1. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3. Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
4. Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
 全文: PDF(747 KB)  
Abstract

The entangled coherent states (ECSs) have been widely used to realize quantum information processing tasks. However, the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel, which may degrade the fidelity of ECSs. To overcome these obstacles, we present a measurement-based entanglement purification protocol (MBEPP) for ECSs to distill some highquality ECSs from a large number of low-quality copies. We first show the principle of this MBEPP without considering the photon loss. After that, we prove that this MBEPP is feasible to correct the error resulted from the photon loss. Additionally, this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications. This MBEPP may have application potential in the implementation of long-distance quantum communication.

Key wordsmeasurement-based entanglement purification    entangled coherent state    photon loss    decoherence
收稿日期: 2021-05-31      出版日期: 2021-08-30
Corresponding Author(s): Yu-Bo Sheng   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(2): 21501.
Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-based entanglement purification for entangled coherent states. Front. Phys. , 2022, 17(2): 21501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1103-8
https://academic.hep.com.cn/fop/CN/Y2022/V17/I2/21501
1 C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
2 T. Das, R. Prabhu, A. Sen(De), and U. Sen, Distributed quantum dense coding with two receivers in noisy environments, Phys. Rev. A 92(5), 052330 (2015)
https://doi.org/10.1103/PhysRevA.92.052330
3 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
4 B. G. Taketani, F. de Melo, and R. L. de Matos Filho, Optimal teleportation with a noisy source, Phys. Rev. A 85(2), 020301(R) (2012)
https://doi.org/10.1103/PhysRevA.85.020301
5 X. M. Hu, C. Zhang, C. J. Zhang, B. H. Liu, Y. F. Huang, Y. J. Han, C. F. Li, and G. C. Guo, Experimental certification for nonclassical teleportation, Quant. Engineering 1(2), e3 (2019)
https://doi.org/10.1002/que2.13
6 Z. H. Yan, J. L. Qin, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, Generation of non-classical states of light and their application in deterministic quantum teleportation, Fundamental Res. 1(1), 43 (2021)
https://doi.org/10.1016/j.fmre.2020.11.005
7 A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
8 H. K. Lo, M. Curty, and B. Qi, Measurement-device independent quantum key distribution, Phys. Rev. Lett.108(13), 130503 (2012)
https://doi.org/10.1103/PhysRevLett.108.130503
9 F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys.92(2), 025002 (2020)
https://doi.org/10.1103/RevModPhys.92.025002
10 Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron.62(11), 110311 (2019)
https://doi.org/10.1007/s11433-019-1438-6
11 Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys.16(1), 11501 (2021)
https://doi.org/10.1007/s11467-020-1005-1
12 G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
13 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
14 F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
15 W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett.118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
16 F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahran, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron.60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
17 S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Three step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron.61(9), 90312 (2018)
https://doi.org/10.1007/s11433-018-9224-5
18 L. Zhou, Y. B. Sheng, and G. L. Long, Device independent quantum secure direct communication against collective attacks, Sci. Bull.65(1), 12 (2020)
https://doi.org/10.1016/j.scib.2019.10.025
19 Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron.63(3), 230362 (2020)
https://doi.org/10.1007/s11433-019-1450-8
20 T. Li, Z. K. Gao, and Z. H. Li, Measurement-device independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator, EPL 131(6), 60001 (2020)
https://doi.org/10.1209/0295-5075/131/60001
21 T. Li and G. L. Long, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys.22(6), 063017 (2020)
https://doi.org/10.1088/1367-2630/ab8ab5
22 D. Pan, Z. S. Lin, J. W. Wu, H. R. Zhang, Z. Sun, D. Ruan, L. G. Yin, and G. L. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res.8(9), 1522 (2020)
https://doi.org/10.1364/PRJ.388790
23 C. Wang, Quantum secure direct communication: Intersection of communication and cryptography, Fundamental Res.1(1), 91 (2021)
https://doi.org/10.1016/j.fmre.2021.01.002
24 Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys.16(2), 21503 (2021)
https://doi.org/10.1007/s11467-020-1025-x
25 J. Y. Quan, Q. Li, C. D. Liu, J. J. Shi, and Y. Peng, A simplified verifiable blind quantum computing protocol with quantum input verification, Quant. Engineering 3(1), e58 (2021)
https://doi.org/10.1002/que2.58
26 D. X. Li, C. Yang, and X. Q. Shao, Dissipative engineering of a tripartite Greenberger–Horne–Zeilinger state for neutral atoms, Quant. Engineering 3(2), e66 (2021)
https://doi.org/10.1002/que2.66
27 H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65(4), 042305 (2002)
https://doi.org/10.1103/PhysRevA.65.042305
28 M. Paternostro, M. S. Kim, and P. L. Knight, Vibrational coherent quantum computation, Phys. Rev. A 71(2), 022311 (2005)
https://doi.org/10.1103/PhysRevA.71.022311
29 A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault tolerant linear optical quantum computing with small amplitude coherent states, Phys. Rev. Lett.100(3), 030503 (2008)
https://doi.org/10.1103/PhysRevLett.100.030503
30 L. M. Zhang, T. Gao, and F. L. Yan, Transformations of multilevel coherent states under coherence-preserving operations, Sci. China Phys. Mech. Astron.64(6), 260312 (2021)
https://doi.org/10.1007/s11433-021-1696-y
31 A. Mecozzi and P. Tombesi, Distinguishable quantum states generated via nonlinear birefringence, Phys. Rev. Lett.58(11), 1055 (1987)
https://doi.org/10.1103/PhysRevLett.58.1055
32 B. C. Sanders, Entangled coherent states, Phys. Rev. A 45(9), 6811 (1992)
https://doi.org/10.1103/PhysRevA.45.6811
33 H. Jeong, M. S. Kim, and J. Lee, Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel, Phys. Rev. A 64(5), 052308 (2001)
https://doi.org/10.1103/PhysRevA.64.052308
34 X. G. Wang, Quantum teleportation of entangled coherent states, Phys. Rev. A 64(2), 022302 (2001)
https://doi.org/10.1103/PhysRevA.64.022302
35 S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A 64(2), 022313 (2001)
https://doi.org/10.1103/PhysRevA.64.022313
36 J. Joo and E. Ginossar, Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics, Sci. Rep.6(1), 26338 (2016)
https://doi.org/10.1038/srep26338
37 K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum information processing, Phys. Rev. A 82(6), 062325 (2010)
https://doi.org/10.1103/PhysRevA.82.062325
38 D. S. Simon, G. Jaeger, and A. V. Sergienko, Entangled coherent-state quantum key distribution with entanglement witnessing, Phys. Rev. A 89(1), 012315 (2014)
https://doi.org/10.1103/PhysRevA.89.012315
39 S. L. Zhang, Improving long-distance distribution of entangled coherent state with the method of twin-field quantum key distribution, Opt. Express 27(25), 37087 (2019)
https://doi.org/10.1364/OE.27.037087
40 X. F. Ma, P. Zeng, and H. Y. Zhou, Phase-matching quantum key distribution, Phys. Rev. X 8(3), 031043 (2018)
https://doi.org/10.1103/PhysRevX.8.031043
41 X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous variable quantum key distribution with photon subtraction, Front. Phys.14(4), 41501 (2019)
https://doi.org/10.1007/s11467-019-0881-8
42 J. J. Ma, Y. Zhou, X. Yuan, and X. F. Ma, Operational interpretation of coherence in quantum key distribution, Phys. Rev. A 99(6), 062325 (2019)
https://doi.org/10.1103/PhysRevA.99.062325
43 X. D. Wu, Y. J. Wang, D. Huang, and Y. Guo, Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation, Front. Phys.15(3), 31601 (2020)
https://doi.org/10.1007/s11467-020-0954-8
44 S. Y. Lee, Y. S. Ihn, and Z. Kim, Optimal entangled coherent states in lossy quantum-enhanced metrology, Phys. Rev. A 101(1), 012332 (2020)
https://doi.org/10.1103/PhysRevA.101.012332
45 N. Sangouard, C. Simon, N. Gisin, J. Laurat, R. Tualle-Brouri, and P. Grangier, Quantum repeaters with entangled coherent states, J. Opt. Soc. Am. B 27(6), A137 (2010)
https://doi.org/10.1364/JOSAB.27.00A137
46 L. M. Kuang, Z. B. Chen, and J. W. Pan, Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency, Phys. Rev. A 76(5), 052324 (2007)
https://doi.org/10.1103/PhysRevA.76.052324
47 A. P. Lund, T. C. Ralph, and H. Jeong, Generation of distributed entangled coherent states over a lossy environment with inefficient detectors, Phys. Rev. A 88(5), 052335 (2013)
https://doi.org/10.1103/PhysRevA.88.052335
48 Z. R. Zhong, X. J. Huang, Z. B. Yang, L. T. Shen, and S. B. Zheng, Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion, Phys. Rev. A 98(3), 032311 (2018)
https://doi.org/10.1103/PhysRevA.98.032311
49 B. Xiong, X. Li, S. L. Chao, Z. Yang, W. Z. Zhang, and L. Zhou, Generation of entangled Schrödinger cat state of two macroscopic mirrors, Opt. Express 27(9), 13547 (2019)
https://doi.org/10.1364/OE.27.013547
50 L. Tian, S. P. Shi, Y. H. Tian, Y. J. Wang, Y. H. Zheng, and K. C. Peng, Resource reduction for simultaneous generation of two types of continuous variable nonclassical states, Front. Phys.16(2), 21502 (2021)
https://doi.org/10.1007/s11467-020-1012-2
51 Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
52 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary Wstates, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
53 B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)
https://doi.org/10.1364/OE.22.006547
54 H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys.13(5), 130315 (2018)
https://doi.org/10.1007/s11467-018-0801-3
55 H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyper entanglement concentration for polarizationspatial-time-bin hyperentangled photon systems with linear optics, Quantum Inform. Process.16(10), 237 (2017)
https://doi.org/10.1007/s11128-017-1688-6
56 M. Sisodia, C. Shukla, and G. L. Long, Linear optics based entanglement concentration protocols for cluster type entangled coherent state, Quantum Inform. Process.18(8), 253 (2019)
https://doi.org/10.1007/s11128-019-2362-y
57 J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys.14(2), 21601 (2019)
https://doi.org/10.1007/s11467-018-0866-z
58 L. Zhou, J. Liu, Z. K. Liu, W. Zhong, and Y. B. Sheng, Logic W-state concentration with parity check, Quant. Engineering 3(2), e63 (2021)
https://doi.org/10.1002/que2.63
59 C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noise entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett.76(5), 722 (1996)
https://doi.org/10.1103/PhysRevLett.76.722
60 D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett.77(13), 2818 (1996)
https://doi.org/10.1103/PhysRevLett.77.2818
61 M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, Multiparticle entanglement purification protocols, Phys. Rev. A 57(6), R4075 (1998)
https://doi.org/10.1103/PhysRevA.57.R4075
62 J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
https://doi.org/10.1038/35074041
63 C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett.89(25), 257901 (2002)
https://doi.org/10.1103/PhysRevLett.89.257901
64 Y. B. Sheng, L. Zhou, and G. L. Long, Hybrid entanglement purification for quantum repeaters, Phys. Rev. A 88(2), 022302 (2013)
https://doi.org/10.1103/PhysRevA.88.022302
65 M. Zwerger, H. J. Briegel, and W. Dür, Universal and optimal error thresholds for measurement-based entanglement purification, Phys. Rev. Lett.110(26), 260503 (2013)
https://doi.org/10.1103/PhysRevLett.110.260503
66 M. Zwerger, H. J. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)
https://doi.org/10.1103/PhysRevA.90.012314
67 G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, Faithful entanglement purification for high capacity quantum communication with two-photon four qubit systems, Phys. Rev. Appl.10(5), 054058 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054058
68 L. Zhou, W. Zhong, and Y. B. Sheng, Purification of the residual entanglement, Opt. Express 28(2), 2291 (2020)
https://doi.org/10.1364/OE.383499
69 M. Y. Wang, F. L. Yan, and T. Gao, Entanglement purification of two-photon systems in multiple degrees of freedom, Quantum Inform. Process.19(7), 206 (2020)
https://doi.org/10.1007/s11128-020-02697-3
70 D. Y. Chen, Z. Lin, M. Yang, Q. Yang, X. P. Zang, and Z. L. Cao, Distillation of lossy hyperentangled states, Phys.Rev. A 102(2), 022425 (2020)
https://doi.org/10.1103/PhysRevA.102.022425
71 X. M. Hu, C. X. Huang, Y. B. Sheng, L. Zhou, B. H. Liu, Y. Guo, C. Zhang, W. B. Xing, Y. F. Huang, C. F. Li, and G. C. Guo, Long-distance entanglement purification for quantum communication, Phys. Rev. Lett.126(1), 010503 (2021)
https://doi.org/10.1103/PhysRevLett.126.010503
72 P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Feasible time-bin entanglement purification based on sum frequency generation, Opt. Express 29(2), 571 (2021)
https://doi.org/10.1364/OE.409931
73 P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Feasible measurement-based entanglement purification in linear optics, Opt. Express 29(6), 9363 (2021)
https://doi.org/10.1364/OE.420348
74 H. Jeong and M. S. Kim, Purification of entangled coherent states, Quantum Inf. Comput.2(3), 208 (2002)
https://doi.org/10.26421/QIC2.3-4
75 J. Clausen, L. Knöll, and D. G. Welsch, Lossy purification and detection of entangled coherent states, Phys. Rev. A 66(6), 062303 (2002)
https://doi.org/10.1103/PhysRevA.66.062303
76 U. L. Andersen, R. Filip, J. Fiurášek, V. Josse, and G. Leuchs, Experimental purification of coherent states, Phys. Rev. A 72(6), 060301(R) (2005)
https://doi.org/10.1103/PhysRevA.72.060301
77 M. Zwerger, W. Dür, and H. J. Briegel, Measurement based quantum repeaters, Phys. Rev. A 85(6), 062326 (2012)
https://doi.org/10.1103/PhysRevA.85.062326
78 M. Zwerger, H. J. Briegel, and W. Dür, Measurement based quantum communication, Appl. Phys. B 122(3), 50 (2016)
https://doi.org/10.1007/s00340-015-6285-8
79 S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A 87(2), 022326 (2013)
https://doi.org/10.1103/PhysRevA.87.022326
80 A. E. Lita, A. J. Miller, and S. W. Nam, Counting near infrared single-photons with 95% efficiency, Opt. Express 16(5), 3032 (2008)
https://doi.org/10.1364/OE.16.003032
81 M. ö, M. Swillo, S. Gyger, V. Zwiller, and G. Björk, Temporal array with superconducting nanowire single photon detectors for photon-number-resolution, Phys. Rev. A 102(5), 052616 (2020)
https://doi.org/10.1103/PhysRevA.102.052616
82 R. Guo, L. Zhou, S. P. Gu, X. F. Wang, and Y. B. Sheng, Generation of concatenated Greenberger–Horne– Zeilinger-type entangled coherent state based on linear optics, Quantum Inform. Process. 16(3), 68 (2017)
https://doi.org/10.1007/s11128-017-1519-9
83 L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397(6720), 594 (1999)
https://doi.org/10.1038/17561
84 K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, Quantum memory for entangled continuous-variable states, Nat. Phys. 7(1), 13 (2011)
https://doi.org/10.1038/nphys1819
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed