Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (2): 23203   https://doi.org/10.1007/s11467-021-1109-2
  本期目录
Structure search of two-dimensional systems using CALYPSO methodology
Pengyue Gao1,2, Bo Gao3, Shaohua Lu4, Hanyu Liu1,2, Jian Lv1,2(), Yanchao Wang1,2, Yanming Ma1,2,5
1. International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China
2. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
3. Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
4. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
5. International Center of Future Science, Jilin University, Changchun 130012, China
 全文: PDF(2671 KB)  
Abstract

The dimensionality of structures allows materials to be classified into zero-, one-, two-, and threedimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention and typically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systems hold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics. The design of 2D systems is an area of intensive research because of the rapid development of ab initiostructure-searching methods. In this paper, we highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology. Challenges and perspectives for future developments in 2D structure prediction methods are also presented.

Key wordstwo-dimensional (2D) systems    CALYPSO    structure prediction
收稿日期: 2021-04-26      出版日期: 2021-10-09
Corresponding Author(s): Jian Lv   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(2): 23203.
Pengyue Gao, Bo Gao, Shaohua Lu, Hanyu Liu, Jian Lv, Yanchao Wang, Yanming Ma. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. , 2022, 17(2): 23203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1109-2
https://academic.hep.com.cn/fop/CN/Y2022/V17/I2/23203
1 K. S. Novoselov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
3 J. Wang, S. Deng, Z. Liu, and Z. Liu, The rare twodimensional materials with Dirac cones, Natl. Sci. Rev.2(1), 22 (2015)
https://doi.org/10.1093/nsr/nwu080
4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
5 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
6 Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
https://doi.org/10.1109/JPHOT.2012.2199102
7 F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85(16), 3472 (2000)
https://doi.org/10.1103/PhysRevLett.85.3472
8 A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature427(6973), 423 (2004)
https://doi.org/10.1038/nature02308
9 J. P. Buban, Grain boundary strengthening in alumina by rare earth impurities, Science311(5758), 212 (2006)
https://doi.org/10.1126/science.1119839
10 A. R. Oganov, and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)
https://doi.org/10.1063/1.2210932
11 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220(4598), 671 (1983)
https://doi.org/10.1126/science.220.4598.671
12 S. Goedecker, Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems, J. Chem. Phys. 120(21), 9911 (2004)
https://doi.org/10.1063/1.1724816
13 D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101(28), 5111 (1997)
https://doi.org/10.1021/jp970984n
14 R. Martoňák, A. Laio, and M. Parrinello, Predicting crystal structures: The Parrinello–Rahman method revisited, Phys. Rev. Lett. 90(7), 075503 (2003)
https://doi.org/10.1103/PhysRevLett.90.075503
15 C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)
https://doi.org/10.1088/0953-8984/23/5/053201
16 D. C. Lonie and E. Zurek, XtalOpt: An open-source evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 182(2), 372 (2011)
https://doi.org/10.1016/j.cpc.2010.07.048
17 A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, and R. Drautz, New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search, Phys. Rev. Lett.105(21), 217003 (2010)
https://doi.org/10.1103/PhysRevLett.105.217003
18 G. Trimarchi and A. Zunger, Global space-group optimization problem: Finding the stablest crystal structure without constraints, Phys. Rev. B75(10), 104113 (2007)
https://doi.org/10.1103/PhysRevB.75.104113
19 S. Bahmann and J. Kortus, EVO — Evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 184(6), 1618 (2013)
https://doi.org/10.1016/j.cpc.2013.02.007
20 W. Bi, Y. Meng, R. S. Kumar, A. L. Cornelius, W. W. Tipton, R. G. Hennig, Y. Zhang, C. Chen, and J. S. Schilling, Pressure-induced structural transitions in europium to 92 GPa, Phys. Rev. B 83(10), 104106 (2011)
https://doi.org/10.1103/PhysRevB.83.104106
21 S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, Global minimum structure searches via particle swarm optimization, J. Comput. Chem. 28(7), 1177 (2007)
https://doi.org/10.1002/jcc.20621
22 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
23 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
24 J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett.116(2), 025501 (2016)
https://doi.org/10.1103/PhysRevLett.116.025501
25 K. A. Tikhomirova, C. Tantardini, E. V. Sukhanova, Z. I. Popov, S. A. Evlashin, M. A. Tarkhov, V. L. Zhdanov, A. A. Dudin, A. R. Oganov, D. G. Kvashnin, and A. G. Kvashnin, Exotic two-dimensional structure: The first case of hexagonal NaCl, J. Phys. Chem. Lett. 11(10), 3821 (2020)
https://doi.org/10.1021/acs.jpclett.0c00874
26 Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
27 Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)
https://doi.org/10.1063/1.4769731
28 X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S. H. Wei, X. Gong, and H. Xiang, Predicting twodimensional boron-carbon compounds by the global optimization method, J. Am. Chem. Soc. 133(40), 16285 (2011)
https://doi.org/10.1021/ja2072753
29 B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
https://doi.org/10.1021/acs.jpcc.5b05035
30 S. Lu, Y. Wang, H. Liu, M. S. Miao, and Y. Ma, Selfassembled ultrathin nanotubes on diamond (100) surface, Nat. Commun. 5(1), 3666 (2014)
https://doi.org/10.1038/ncomms4666
31 B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)
https://doi.org/10.1016/j.scib.2019.02.009
32 J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Chem. Phys. 137(8), 084104 (2012)
https://doi.org/10.1063/1.4746757
33 K. Yin, P. Gao, X. Shao, B. Gao, H. Liu, J. Lv, J. S. Tse, Y. Wang, and Y. Ma, An automated predictor for identifying transition states in solids, npj Comput. Mater.6(1), 16 (2020)
https://doi.org/10.1038/s41524-020-0286-9
34 P. Gao, Q. Tong, J. Lv, Y. Wang, and Y. Ma, Xray diffraction data-assisted structure searches, Comput. Phys. Commun. 213, 40 (2017)
https://doi.org/10.1016/j.cpc.2016.11.007
35 Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)
https://doi.org/10.1103/PhysRevX.7.011017
36 X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)
https://doi.org/10.1063/1.4794424
37 H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112, 406 (2016)
https://doi.org/10.1016/j.commatsci.2015.09.037
38 Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)
https://doi.org/10.1088/0953-8984/27/20/203203
39 Q. Tong, J. Lv, P. Gao, and Y. Wang, The CALYPSO methodology for structure prediction, Chin. Phys. B28(10), 106105 (2019)
https://doi.org/10.1088/1674-1056/ab4174
40 C. Tang, G. Kour, and A. Du, Recent progress on the prediction of two-dimensional materials using CALYPSO, Chin. Phys. B 28(10), 107306 (2019)
https://doi.org/10.1088/1674-1056/ab41ea
41 L. C. Xu, R. Z. Wang, M. S. Miao, X. L. Wei, Y. P. Chen, H. Yan, W. M. Lau, L. M. Liu, and Y. M. Ma, Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6(2), 1113 (2014)
https://doi.org/10.1039/C3NR04463G
42 F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)
https://doi.org/10.1021/acs.nanolett.5b05292
43 M. Xu, G. Zhan, S. Liu, D. Zhang, X. Zhong, Z. Qu, Y. Li, A. Du, H. Zhang, and Y. Wang, PT-symmetry-protected Dirac states in strain-induced hidden MoS2 monolayer, Phys. Rev. B 100(23), 235435 (2019)
https://doi.org/10.1103/PhysRevB.100.235435
44 X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21(2), 617 (2019)
https://doi.org/10.1039/C8CP05778H
45 X. Li and Q. Wang, Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state, Phys. Rev. B 97(8), 085418 (2018)
https://doi.org/10.1103/PhysRevB.97.085418
46 P. Zhou, Z. S. Ma, and L. Z. Sun, Coexistence of open and closed type nodal line topological semimetals in two dimensional B2C, J. Mater. Chem. C6(5), 1206 (2018)
https://doi.org/10.1039/C7TC05095J
47 F. Ma, G. Gao, Y. Jiao, Y. Gu, A. Bilic, H. Zhang, Z. Chen, and A. Du, Predicting a new phase (T″) of twodimensional transition metal di-chalcogenides and straincontrolled topological phase transition, Nanoscale8(9), 4969 (2016)
https://doi.org/10.1039/C5NR07715J
48 Z. H. Cui, E. Jimenez-Izal, and A. N. Alexandrova, Prediction of two-dimensional phase of boron with anisotropic electric conductivity, J. Phys. Chem. Lett. 8(6), 1224 (2017)
https://doi.org/10.1021/acs.jpclett.7b00275
49 Y. Ding and Y. Wang, Geometric and electronic structures of two-dimensional SiC3 compound, J. Phys. Chem. C 118(8), 4509 (2014)
https://doi.org/10.1021/jp412633y
50 H. Zhang, Y. Li, J. Hou, A. Du, and Z. Chen, Dirac state in the FeB2 monolayer with graphene-like boron sheet, Nano Lett. 16(10), 6124 (2016)
https://doi.org/10.1021/acs.nanolett.6b02335
51 B. Wang, S. Yuan, Y. Li, L. Shi, and J. Wang, A new Dirac cone material: A graphene-like Be3C2 monolayer, Nanoscale9(17), 5577 (2017)
https://doi.org/10.1039/C7NR00455A
52 P. F. Liu, L. Zhou, S. Tretiak, and L. M. Wu, Twodimensional hexagonal M3C2 (M= Zn, Cd and Hg) monolayers: Novel quantum spin Hall insulators and Dirac cone materials, J. Mater. Chem. C5(35), 9181 (2017)
https://doi.org/10.1039/C7TC02739G
53 J. Zhou and P. Jena, Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds, Phys. Rev. B 95(8), 081102 (2017)
https://doi.org/10.1103/PhysRevB.95.081102
54 H. Li, Y. Xu, X. Sun, and S. Wang, Mg3X2 (X= C, Si) monolayer in a honeycomb-Kagome lattice: A global minimum structure, J. Alloys Compd.765, 969 (2018)
https://doi.org/10.1016/j.jallcom.2018.06.293
55 K. Jiang, A. Cui, S. Shao, J. Feng, H. Dong, B. Chen, Y. Wang, Z. Hu, and J. Chu, New pressure stabilization structure in two-dimensional PtSe2, J. Phys. Chem. Lett.11(17), 7342 (2020)
https://doi.org/10.1021/acs.jpclett.0c01813
56 C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001), ACS Nano13(9), 10434 (2019)
https://doi.org/10.1021/acsnano.9b04223
57 L. Yan, T. Bo, P. F. Liu, B. T. Wang, Y. G. Xiao, and M. H. Tang, Prediction of phonon-mediated superconductivity in two-dimensional Mo2B2, J. Mater. Chem. C 7(9), 2589 (2019)
https://doi.org/10.1039/C8TC06123H
58 T. Bo, P. F. Liu, L. Yan, and B. T. Wang, Electron–phonon coupling superconductivity in two-dimensional orthorhombic MB6 (M= Mg, Ca, Ti, Y) and hexagonal MB6 (M= Mg, Ca, Sc, Ti), Phys. Rev. Mater. 4(11), 114802 (2020)
https://doi.org/10.1103/PhysRevMaterials.4.114802
59 D. Fan, S. Lu, Y. Guo, and X. Hu, Two-dimensional stoichiometric boron carbides with unexpected chemical bonding and promising electronic properties, J. Mater. Chem. C 6(7), 1651 (2018)
https://doi.org/10.1039/C7TC04505K
60 Z. Qu, S. Lin, M. Xu, J. Hao, J. Shi, W. Cui, and Y. Li, Prediction of strain-induced phonon-mediated superconductivity in monolayer YS, J. Mater. Chem. C7(36), 11184 (2019)
https://doi.org/10.1039/C9TC03657A
61 L. Yan, T. Bo, W. Zhang, P. F. Liu, Z. Lu, Y. G. Xiao, M. H. Tang, and B. T. Wang, Novel structures of twodimensional tungsten boride and their superconductivity, Phys. Chem. Chem. Phys. 21(28), 15327 (2019)
https://doi.org/10.1039/C9CP02727K
62 H. Li, Y. Hao, D. Sun, D. Zhou, G. Liu, H. Wang, and Q. Li, Mechanical properties and superconductivity in two-dimensional B2O under extreme strain, Phys. Chem. Chem. Phys. 21(46), 25859 (2019)
https://doi.org/10.1039/C9CP04826J
63 L. Yan, P. F. Liu, H. Li, Y. Tang, J. He, X. Huang, B. T. Wang, and L. Zhou, Theoretical dissection of superconductivity in two-dimensional honeycomb borophene oxide B2O crystal with a high stability, npj Comput. Mater. 6(1), 94 (2020)
https://doi.org/10.1038/s41524-020-00365-9
64 L. Yan, T. Bo, P. F. Liu, L. Zhou, J. Zhang, M. H. Tang, Y. G. Xiao, and B. T. Wang, Superconductivity in predicted two dimensional XB6 (X= Ga, J. Mater. Chem. C 8(5), 1704 (2020)
https://doi.org/10.1039/C9TC05783H
65 F. Zheng, X. B. Li, P. Tan, Y. Lin, L. Xiong, X. Chen, and J. Feng, Emergent superconductivity in two-dimensional NiTe2 crystals, Phys. Rev. B101(10), 100505 (2020)
https://doi.org/10.1103/PhysRevB.101.100505
66 Z. Qu, F. Han, T. Yu, M. Xu, Y. Li, and G. Yang, Boron Kagome-layer induced intrinsic superconductivity in a MnB3 monolayer with a high critical temperature, Phys. Rev. B102(7), 075431 (2020)
https://doi.org/10.1103/PhysRevB.102.075431
67 D. Fan, S. Lu, C. Chen, M. Jiang, X. Li, and X. Hu, Versatile two-dimensional boron monosulfide polymorphs with tunable bandgaps and superconducting properties, Appl. Phys. Lett.117(1), 013103 (2020)
https://doi.org/10.1063/5.0006059
68 Y. Li, Y. Liao, and Z. Chen, Be2C monolayer with quasi‐planar hexacoordinate carbons: A global minimum structure, Angew. Chem. 126(28), 7376 (2014)
https://doi.org/10.1002/ange.201403833
69 L. M. Yang, V. Bačić, I. A. Popov, A. I. Boldyrev, T. Heine, T. Frauenheim, and E. Ganz, Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding, J. Am. Chem. Soc. 137(7), 2757 (2015)
https://doi.org/10.1021/ja513209c
70 H. Zhang, Y. Li, J. Hou, K. Tu, and Z. Chen, FeB6 monolayers: The graphene-like material with hypercoordinate transition metal, J. Am. Chem. Soc. 138(17), 5644 (2016)
https://doi.org/10.1021/jacs.6b01769
71 X. Qu, J. Yang, Y. Wang, J. Lv, Z. Chen, and Y. Ma, A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti, Nanoscale9(45), 17983 (2017)
https://doi.org/10.1039/C7NR05688E
72 Y. Wang, M. Qiao, Y. Li, and Z. Chen, A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon, Nanoscale Horiz.3(3), 327 (2018)
https://doi.org/10.1039/C7NH00091J
73 L. Meng, Y. Zhang, J. Zhang, and W. Wu, Completely flat 2D Zn3O2 monolayer with triangle and pentangle coordinated networks, J. Phys.: Condens. Matter 30(9), 095301 (2018)
https://doi.org/10.1088/1361-648X/aaa8c8
74 Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun.7(1), 11488 (2016)
https://doi.org/10.1038/ncomms11488
75 C. Zhu, H. Lv, X. Qu, M. Zhang, J. Wang, S. Wen, Q. Li, Y. Geng, Z. Su, X. Wu, Y. Li, and Y. Ma, TMC (TM= Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications, J. Mater. Chem. C 7(21), 6406 (2019)
https://doi.org/10.1039/C9TC00635D
76 D. Fan, C. Chen, S. Lu, X. Li, M. Jiang, and X. Hu, Highly stable two-dimensional iron monocarbide with planar hypercoordinate moiety and superior Li-ion storage performance, ACS Appl. Mater. Interfaces12(27), 30297 (2020)
https://doi.org/10.1021/acsami.0c03764
77 C. Tang, K. K. Ostrikov, S. Sanvito, and A. Du, Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer, Nanoscale Horiz. 6(1), 43 (2021)
https://doi.org/10.1039/D0NH00598C
78 T. Yu, S. Zhang, F. Li, Z. Zhao, L. Liu, H. Xu, and G. Yang, Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery, J. Mater. Chem. A5(35), 18698 (2017)
https://doi.org/10.1039/C7TA04390B
79 S. Jana, S. Thomas, C. H. Lee, B. Jun, and S. U. Lee, B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries, J. Mater. Chem. A 7(20), 12706 (2019)
https://doi.org/10.1039/C9TA02226K
80 G. Yuan, T. Bo, X. Qi, P.-F. Liu, Z. Huang, and B.-T. Wang, Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries, Appl. Surf. Sci.480, 448 (2019)
https://doi.org/10.1016/j.apsusc.2019.02.222
81 T. Bo, P. F. Liu, J. Zhang, F. Wang, and B. T. Wang, Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys.21(9), 5178 (2019)
https://doi.org/10.1039/C9CP00012G
82 Y. Y. Wu, T. Bo, J. Zhang, Z. Lu, Z. Wang, Y. Li, and B. T. Wang, Novel two-dimensional tetragonal vanadium carbides and nitrides as promising materials for Li-ion batteries, Phys. Chem. Chem. Phys. 21(35), 19513 (2019)
https://doi.org/10.1039/C9CP03954F
83 Y. Guo, T. Bo, Y. Wu, J. Zhang, Z. Lu, W. Li, X. Li, P. Zhang, and B. Wang, YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries, Solid State Ionics 345, 115187 (2020)
https://doi.org/10.1016/j.ssi.2019.115187
84 X. H. Cai, Q. Yang, S. Zheng, and M. Wang, Net‐C18: A predicted two-dimensional planar carbon allotrope and potential for an anode in lithium-ion battery, Energy Environ. Mater. 4, 458 (2021)
https://doi.org/10.1002/eem2.12127
85 G. Guo, R. Wang, S. Luo, B. Ming, C. Wang, M. Zhang, Y. Zhang, and H. Yan, Metallic two-dimensional C3N allotropes with electron and ion channels for highperformance Li-ion battery anode materials, Appl. Surf. Sci. 518, 146254 (2020)
https://doi.org/10.1016/j.apsusc.2020.146254
86 D. Li, Two-dimensional C5678: A promising carbon-based high-performance lithium-ion battery anode, Mater. Adv. 2(1), 398 (2021)
https://doi.org/10.1039/D0MA00858C
87 C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, M-graphene: A metastable two-dimensional carbon allotrope, 2D Mater. 7(2), (2020)
https://doi.org/10.1088/2053-1583/ab7977
88 X. Li, Q. Wang, and P. Jena, ψ-graphene: A new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries, J. Phys. Chem. Lett.8(14), 3234 (2017)
https://doi.org/10.1021/acs.jpclett.7b01364
89 T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, and G. Yang, TiC3 monolayer with high specific capacity for sodiumion batteries, J. Am. Chem. Soc. 140(18), 5962 (2018)
https://doi.org/10.1021/jacs.8b02016
90 A. Byeon, M. Q. Zhao, C. E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M. W. Barsoum, and Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries, ACS Appl. Mater. Interfaces9(5), 4296 (2017)
https://doi.org/10.1021/acsami.6b04198
91 Z. Zhao, T. Yu, S. Zhang, H. Xu, G. Yang, and Y. Liu, Metallic P3C monolayer as anode for sodium-ion batteries, J. Mater. Chem. A 7(1), 405 (2019)
https://doi.org/10.1039/C8TA09155B
92 T. Li, C. He, and W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium–sulfur battery design, J. Mater. Chem. A7(8), 4134 (2019)
https://doi.org/10.1039/C8TA10933H
93 Y. Yu, Z. Guo, Q. Peng, J. Zhou, and Z. Sun, Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries, J. Mater. Chem. A 7(19), 12145 (2019)
https://doi.org/10.1039/C9TA02650A
94 H. Huang, H. H. Wu, C. Chi, B. Huang, and T. Y. Zhang, Ab initioinvestigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries, J. Mater. Chem. A 7(15), 8897 (2019)
https://doi.org/10.1039/C9TA00832B
95 C. Zhu, X. Qu, M. Zhang, J. Wang, Q. Li, Y. Geng, Y. Ma, and Z. Su, Planar NiC3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries, J. Mater. Chem. A 7(21), 13356 (2019)
https://doi.org/10.1039/C9TA03494C
96 Y. Wang, Y. Li, and Z. Chen, Not your familiar two dimensional transition metal disulfide: Structural and electronic properties of the PdS2 monolayer, J. Mater. Chem. C 3(37), 9603 (2015)
https://doi.org/10.1039/C5TC01345C
97 C. Zhang and Q. Sun, A honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility, J. Phys. Chem. Lett. 7(14), 2664 (2016)
https://doi.org/10.1021/acs.jpclett.6b01291
98 X. Li, S. Zhang, C. Zhang, and Q. Wang, Stabilizing benzene-like planar N6 rings to form a single atomic honeycomb BeN3 sheet with high carrier mobility, Nanoscale10(3), 949 (2018)
https://doi.org/10.1039/C7NR07845E
99 Q. Wu, W. W. Xu, L. Ma, J. Wang, and X. C. Zeng, Two-dimensional AuMX2 (M= Al, Ga, In; X= S, Se) monolayers featuring intracrystalline aurophilic interactions with novel electronic and optical properties, ACS Appl. Mater. Interfaces 10(19), 16739 (2018)
https://doi.org/10.1021/acsami.8b02820
100 L. B. Meng, S. Ni, Y. J. Zhang, B. Li, X. W. Zhou, and W. D. Wu, Two-dimensional zigzag-shaped Cd2C monolayer with a desirable bandgap and high carrier mobility, J. Mater. Chem. C 6(34), 9175 (2018)
https://doi.org/10.1039/C8TC03119C
101 K. Zhao, X. Li, S. Wang, and Q. Wang, 2D planar penta- MN2 (M= Pd, Pt) sheets identified through structure search, Phys. Chem. Chem. Phys. 21(1), 246 (2019)
https://doi.org/10.1039/C8CP04851G
102 Q. Wu, W. W. Xu, D. Lin, J. Wang, and X. C. Zeng, Twodimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility, J. Phys. Chem. Lett.10(13), 3773 (2019)
https://doi.org/10.1021/acs.jpclett.9b01312
103 C. Tang, F. Ma, C. Zhang, Y. Jiao, S. K. Matta, K. Ostrikov, and A. Du, 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X= S, Se and Te): High stability, large excitonic effect and high charge carrier mobility, J. Mater. Chem. C7(6), 1651 (2019)
https://doi.org/10.1039/C8TC05408H
104 W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, A novel two-dimensional δ-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2, J. Mater. Chem. C 7(24), 7352 (2019)
https://doi.org/10.1039/C9TC02030F
105 C. Pu, J. Yu, R. Yu, X. Tang, and D. Zhou, Hydrogenated PtP2 monolayer: Theoretical predictions on the structure and charge carrier mobility, J. Mater. Chem. C 7(39), 12231 (2019)
https://doi.org/10.1039/C9TC03479J
106 H. Zhang, X. Li, X. Meng, S. Zhou, G. Yang, and X. Zhou, Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility, J. Phys.: Condens. Matter 31(12), 125301 (2019)
https://doi.org/10.1088/1361-648X/aafea4
107 Y. Qian, H. Wu, E. Kan, and K. Deng, Graphene-like quaternary compound SiBCN: A new wide direct band gap semiconductor predicted by a first-principles study, EPL118(1), 17002 (2017)
https://doi.org/10.1209/0295-5075/118/17002
108 G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8(16), 8819 (2016)
https://doi.org/10.1039/C6NR00498A
109 X. Chen, D. Wang, X. Liu, L. Liand B. Sanyal, Twodimensional square-A2B (A= Cu, Ag, Au, and B= S, Se): Auxetic semiconductors with high carrier mobilities and unusually low lattice thermal conductivities, J. Phys. Chem. Lett. 11(8), 2925 (2020)
https://doi.org/10.1021/acs.jpclett.0c00613
110 C. Wang, T. Yu, A. Bergara, X. Du, F. Li, and G. Yang, Anisotropic PC6N monolayer with wide band gap and ultrahigh carrier mobility, J. Phys. Chem. C 124(7), 4330 (2020)
https://doi.org/10.1021/acs.jpcc.0c00494
111 Y. Sun, B. Xu, and L. Yi, HfN2 monolayer: A new directgap semiconductor with high and anisotropic carrier mobility, Chin. Phys. B 29(2), 023102 (2020)
https://doi.org/10.1088/1674-1056/ab610b
112 Y. M. Dou, C. W. Zhang, P. Li, and P. J. Wang, SnxPy monolayers: A new type of two-dimensional materials with high stability, carrier mobility, and magnetic properties, Nanoscale Res. Lett. 15(1), 155 (2020)
https://doi.org/10.1186/s11671-020-03383-0
113 D. Liang, T. Jing, D. Mingsen, and S. Cai, Twodimensional ScN with high carrier mobility and unexpected mechanical properties, Nanotechnology32(15), 155201 (2021)
https://doi.org/10.1088/1361-6528/abd8af
114 L. Shao, X. Duan, Y. Li, F. Zeng, H. Ye, and P. Ding, Two-dimensional Ga2O2 monolayer with tunable band gap and high hole mobility, Phys. Chem. Chem. Phys. 23(1), 666 (2021)
https://doi.org/10.1039/D0CP05171C
115 Q. Wu, W. W. Xu, B. Qu, L. Ma, X. Niu, J. Wang, and X. C. Zeng, Au6S2 monolayer sheets: Metallic and semiconducting polymorphs, Mater. Horiz. 4(6), 1085 (2017)
https://doi.org/10.1039/C7MH00461C
116 C. S. Liu, H. H. Zhu, X. J. Ye, and X. H. Yan, Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons, Nanoscale9(18), 5854 (2017)
https://doi.org/10.1039/C7NR00762K
117 F. Shojaei and H. S. Kang, Partially Planar BP3 with High Electron Mobility as a Phosphorene Analog, J. Mater. Chem. C 5(43), 11267 (2017)
https://doi.org/10.1039/C7TC02346D
118 F. Li, Y. Wang, H. Wu, Z. Liu, U. Aeberhard, and Y. Li, Benzene-like N6 rings in a Be2N6 monolayer: A stable 2D semiconductor with high carrier mobility, J. Mater. Chem. C 5(44), 11515 (2017)
https://doi.org/10.1039/C7TC03363J
119 L. Zhao, W. Yi, J. Botana, F. Gu, and M. Miao, Nitrophosphorene: A 2D semiconductor with both large direct gap and superior mobility, J. Phys. Chem. C 121(51), 28520 (2017)
https://doi.org/10.1021/acs.jpcc.7b09650
120 Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horiz.4(3), 592 (2019)
https://doi.org/10.1039/C8NH00273H
121 Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(i) sulfide: A twodimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horiz. 4(1), 223 (2019)
https://doi.org/10.1039/C8NH00216A
122 H. Xiao, X. Wang, R. Wang, L. Xu, S. Liang, and C. Yang, Intrinsic magnetism and biaxial strain tuning in two-dimensional metal halides V3X8 (X= F, Cl, Br, I) from first principles and Monte Carlo simulation, Phys. Chem. Chem. Phys.21(22), 11731 (2019)
https://doi.org/10.1039/C9CP00850K
123 J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu, and Y. Li, The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides, Phys. Chem. Chem. Phys. 22(4), 2429 (2020)
https://doi.org/10.1039/C9CP05084A
124 Y. Jiao, W. Wu, F. Ma, Z. M. Yu, Y. Lu, X. L. Sheng, Y. Zhang, and S. A. Yang, Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides, Nanoscale11(35), 16508 (2019)
https://doi.org/10.1039/C9NR04338A
125 L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen, N. Zhong, L. Mu, L. Zhang, P. Zhang, L. Gou, Y. Zhao, S. Liang, J. Jiang, Z. Zhang, H. Ren, X. Lei, R. Yi, Y. Qiu, Y. Zhang, X. Liu, M. Wu, L. Yan, C. Duan, S. Zhang, and H. Fang, Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and monovalent calcium ions, Natl. Sci. Rev. 8(7), nwaa274 (2020)
https://doi.org/10.1093/nsr/nwaa274
126 Z. Guan, and S. Ni, Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic Janus VSeTe monolayer, ACS Appl. Mater. Interfaces12(47), 53067 (2020)
https://doi.org/10.1021/acsami.0c13988
127 Z. Guan and S. Ni, Predicted 2D ferromagnetic Janus VSeTe monolayer with high curie temperature, large valley polarization and magnetic crystal anisotropy, Nanoscale12(44), 22735 (2020)
https://doi.org/10.1039/D0NR04837B
128 C. Zhang, Y. Nie, S. Sanvito, and A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization, Nano Lett. 19(2), 1366 (2019)
https://doi.org/10.1021/acs.nanolett.8b05050
129 S. Zheng, C. Huang, T. Yu, M. Xu, S. Zhang, H. Xu, Y. Liu, E. Kan, Y. Wang, and G. Yang, High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy, J. Phys. Chem. Lett. 10(11), 2733 (2019)
https://doi.org/10.1021/acs.jpclett.9b00970
130 B. Wang, Y. Zhang, L. Ma, Q. Wu, Y. Guo, X. Zhang, and J. Wang, MnX (X= P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy, Nanoscale11(10), 4204 (2019)
https://doi.org/10.1039/C8NR09734H
131 H. Pan, Y. Han, J. Li, H. Zhang, Y. Du, and N. Tang, Half-metallicity in a honeycomb–Kagome-lattice Mg3C2 monolayer with carrier doping, Phys. Chem. Chem. Phys.20(20), 14166 (2018)
https://doi.org/10.1039/C8CP01727A
132 M. Xu, X. Zhong, J. Lv, W. Cui, J. Shi, V. Kanchana, G. Vaitheeswaran, J. Hao, Y. Wang, and Y. Li, Ti-fractioninduced electronic and magnetic transformations in titanium oxide films, J. Chem. Phys. 150(15), 154704 (2019)
https://doi.org/10.1063/1.5089697
133 W. Luo, K. Xu, and H. Xiang, Two-dimensional hyperferroelectric metals: A different route to ferromagneticferroelectric multiferroics, Phys. Rev. B 96(23), 235415 (2017)
https://doi.org/10.1103/PhysRevB.96.235415
134 P. Li, W. Zhang, D. Li, C. Liang, and X. C. Zeng, Multifunctional binary monolayers GexPy: Tunable band gap, ferromagnetism, and photocatalyst for water splitting, ACS Appl. Mater. Interfaces10(23), 19897 (2018)
https://doi.org/10.1021/acsami.8b05655
135 Y. Gao, M. Wu, and X. C. Zeng, Phase transitions and ferroelasticity–multiferroicity in bulk and twodimensional silver and copper monohalides, Nanoscale Horiz.4(5), 1106 (2019)
https://doi.org/10.1039/C9NH00172G
136 M. Xu, C. Huang, Y. Li, S. Liu, X. Zhong, P. Jena, E. Kan, and Y. Wang, Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer, Phys. Rev. Lett.124(6), 067602 (2020)
https://doi.org/10.1103/PhysRevLett.124.067602
137 H. Wang, X. Li, J. Sun, Z. Liu, and J. Yang, BP5 monolayer with multiferroicity and negative Poisson’s ratio: A prediction by global optimization method, 2D Mater.4(4), 045020 (2017)
https://doi.org/10.1088/2053-1583/aa8abd
138 B. Wang, H. Gao, Q. Lu, W. Xie, Y. Ge, Y. H. Zhao, K. Zhang, and Y. Liu, Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2, Phys. Rev. B98(11), 115164 (2018)
https://doi.org/10.1103/PhysRevB.98.115164
139 L. Hu, X. Wu, and J. Yang, Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling, Nanoscale 8(26), 12939 (2016)
https://doi.org/10.1039/C6NR02417C
140 S. Zhang, Y. Li, T. Zhao, and Q. Wang, Robust ferromagnetism in monolayer chromium nitride, Sci. Rep.4(1), 5241 (2015)
https://doi.org/10.1038/srep05241
141 Y. Zhang, J. Pang, M. Zhang, X. Gu, and L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism, Sci. Rep. 7(1), 15993 (2017)
https://doi.org/10.1038/s41598-017-16032-x
142 C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang, K. Deng, and E. Kan, Toward intrinsic roomtemperature ferromagnetism in two-dimensional semiconductors, J. Am. Chem. Soc.140(36), 11519 (2018)
https://doi.org/10.1021/jacs.8b07879
143 Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity, J. Phys. Chem. Lett.9(15), 4260 (2018)
https://doi.org/10.1021/acs.jpclett.8b01976
144 X. Tang, W. Sun, Y. Gu, C. Lu, L. Kou, and C. Chen, CoB6 Monolayer: A robust two-dimensional ferromagnet, Phys. Rev. B 99(4), 045445 (2019)
https://doi.org/10.1103/PhysRevB.99.045445
145 Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun.7(1), 11488 (2016)
https://doi.org/10.1038/ncomms11488
146 Z. Gao, X. Dong, N. Li, and J. Ren, Novel twodimensional silicon dioxide with in-plane negative Poisson’s ratio, Nano Lett. 17(2), 772 (2017)
https://doi.org/10.1021/acs.nanolett.6b03921
147 L. Meng, Y. Zhang, M. Zhou, J. Zhang, X. Zhou, S. Ni, and W. Wu, Unique zigzag-shaped buckling Zn2C monolayer with strain-tunable band gap and negative Poisson ratio, Inorg. Chem. 57(4), 1958 (2018)
https://doi.org/10.1021/acs.inorgchem.7b02867
148 S. Liu, H. Du, G. Li, L. Li, X. Shi, and B. Liu, Twodimensional carbon dioxide with high stability, a negative Poisson’s ratio and a huge band gap, Phys. Chem. Chem. Phys. 20(31), 20615 (2018)
https://doi.org/10.1039/C8CP02742K
149 C. Zhang, T. He, S. K. Matta, T. Liao, L. Kou, Z. Chen, and A. Du, Predicting novel 2D MB2 (M= Ti, Hf, V, Nb, Ta) monolayers with ultrafast Dirac transport channel and electron-orbital controlled negative Poisson’s ratio, J. Phys. Chem. Lett. 10(10), 2567 (2019)
https://doi.org/10.1021/acs.jpclett.9b00762
150 B. Wang, Q. Wu, Y. Zhang, L. Ma, and J. Wang, Auxetic B4N monolayer: A promising 2D material with in-plane negative Poisson’s ratio and large anisotropic mechanics, ACS Appl. Mater. Interfaces 11(36), 33231 (2019)
https://doi.org/10.1021/acsami.9b10472
151 H. Du, G. Li, J. Chen, Z. Lv, Y. Chen, and S. Liu, A novel SiO monolayer with a negative Poisson’s ratio and Dirac semimetal properties, Phys. Chem. Chem. Phys.22(35), 20107 (2020)
https://doi.org/10.1039/D0CP02169E
152 J. Lv, M. Xu, S. Lin, X. Shao, X. Zhang, Y. Liu, Y. Wang, Z. Chen, and Y. Ma, Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency, Nano Energy51(July), 489 (2018)
https://doi.org/10.1016/j.nanoen.2018.06.079
153 H. Zhang, Y. Liao, G. Yang, and X. Zhou, Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: A promising candidate for metalfree photocatalysts, ACS Omega3(9), 10517 (2018)
https://doi.org/10.1021/acsomega.8b01998
154 H. Wang, X. Li, Z. Liu, and J. Yang, ψ-phosphorene: A new allotrope of phosphorene, Phys. Chem. Chem. Phys. 19(3), 2402 (2017)
https://doi.org/10.1039/C6CP07944J
155 X. Fu, J. Guo, L. Li, and T. Dai, Structural and electronic properties of predicting two-dimensional BC2P and BC3P3 monolayers by the global optimization method, Chem. Phys. Lett.726, 69 (2019)
https://doi.org/10.1016/j.cplett.2019.04.042
156 J. Guan, L. Zhang, K. Deng, Y. Du, and E. Kan, Computational dissection of 2D SiC7 monolayer: A direct band gap semiconductor and high power conversion efficiency, Adv. Theory Simul. 2(8), 1900058 (2019)
https://doi.org/10.1002/adts.201900058
157 C. Kou, Y. Tian, L. Gao, M. Lu, M. Zhang, H. Liu, D. Zhang, X. Cui, and W. Yang, Theoretical design of two-dimensional carbon nitrides, Nanotechnology31(49), 495707 (2020)
https://doi.org/10.1088/1361-6528/abb334
158 H. Chang, K. Tu, X. Zhang, J. Zhao, X. Zhou, and H. Zhang, B4C3 monolayer with impressive electronic, optical, and mechanical properties: A potential metal-free photocatalyst for CO2 reduction under visible light, J. Phys. Chem. C 123(41), 25091 (2019)
https://doi.org/10.1021/acs.jpcc.9b06744
159 Y. Ding, X. Nie, H. Dong, N. Rujisamphan, and Y. Li, Predicting a new graphene derivative C3H as potential photocatalyst for water splitting and CO2 reduction, Physica E 127, 114562 (2021)
https://doi.org/10.1016/j.physe.2020.114562
160 J. Zhang, J. Ren, H. Fu, Z. Ding, H. Li, and S. Meng, Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials, Sci. China Phys. Mech. Astron.58(10), 106801 (2015)
https://doi.org/10.1007/s11433-015-5703-6
161 D. Fan, S. Lu, Y. Guo, and X. Hu, Novel bonding patterns and optoelectronic properties of the twodimensional SixCy monolayers, J. Mater. Chem. C5(14), 3561 (2017)
https://doi.org/10.1039/C6TC05415C
162 Y. Chen, Z. Lao, B. Sun, X. Feng, S. A. T. Redfern, H. Liu, J. Lv, H. Wang, and Z. Chen, Identifying the groundstate NP sheet through a global structure search in twodimensional space and its promising high-efficiency photovoltaic properties, ACS Mater. Lett. 1(3), 375 (2019)
https://doi.org/10.1021/acsmaterialslett.9b00220
163 X. Cai, Y. Chen, B. Sun, J. Chen, H. Wang, Y. Ni, L. Tao, H. Wang, S. Zhu, X. Li, Y. Wang, J. Lv, X. Feng, S. A. T. Redfern, and Z. Chen, Two-dimensional blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties, Nanoscale11(17), 8260 (2019)
https://doi.org/10.1039/C9NR01261C
164 W. Luo and H. Xiang, Two-dimensional phosphorus oxides as energy and information materials, Angew. Chem. Int. Ed. 55(30), 8575 (2016)
https://doi.org/10.1002/anie.201602295
165 M. Zhang, G. Gao, A. Kutana, Y. Wang, X. Zou, J. S. Tse, B. I. Yakobson, H. Li, H. Liu, and Y. Ma, Two-dimensional boron–nitrogen–carbon monolayers with tunable direct band gaps, Nanoscale7(28), 12023 (2015)
https://doi.org/10.1039/C5NR03344F
166 B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties, Phys. Rev. B 91(12), 121401 (2015)
https://doi.org/10.1103/PhysRevB.91.121401
167 C. Zhang, J. Liu, H. Shen, X. Z. Li, and Q. Sun, Identifying the ground state geometry of a MoN2 sheet through a global structure search and its tunable P-electron halfmetallicity, Chem. Mater. 29(20), 8588 (2017)
https://doi.org/10.1021/acs.chemmater.7b01606
168 Y. Hu, S. S. Li, W. X. Ji, C. W. Zhang, M. Ding, P. J. Wang, and S. S. Yan, Glide mirror plane protected nodalloop in an anisotropic half-metallic MnNF monolayer, J. Phys. Chem. Lett. 11(2), 485 (2020)
https://doi.org/10.1021/acs.jpclett.9b03320
169 X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano6(8), 7443 (2012)
https://doi.org/10.1021/nn302696v
170 X. Yu, L. Li, X. W. Xu, and C. C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm, J. Phys. Chem. C116(37), 20075 (2012)
https://doi.org/10.1021/jp305545z
171 B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem.8(6), 563 (2016)
https://doi.org/10.1038/nchem.2491
172 S. Liu, B. Liu, X. Shi, J. Lv, S. Niu, M. Yao, Q. Li, R. Liu, T. Cui, and B. Liu, Two-dimensional penta-BP5 sheets: High-stability, strain-tunable electronic structure and excellent mechanical properties, Sci. Rep. 7(1), 2404 (2017)
https://doi.org/10.1038/s41598-017-02011-9
173 W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
https://doi.org/10.1038/nature05023
174 M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40(4), 223 (2015)
https://doi.org/10.1080/10408436.2014.992584
175 L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
https://doi.org/10.1021/nl304347w
176 B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett.97(22), 223109 (2010)
https://doi.org/10.1063/1.3524215
177 P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett.102(16), 163106 (2013)
https://doi.org/10.1063/1.4802782
178 B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett.12(7), 3507 (2012)
https://doi.org/10.1021/nl301047g
179 A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett.108(24), 245501 (2012)
https://doi.org/10.1103/PhysRevLett.108.245501
180 B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96(18), 183102 (2010)
https://doi.org/10.1063/1.3419932
181 A. J. Mannix, B. Kiraly, B. L. Fisher, M. C. Hersam, and N. P. Guisinger, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano 8(7), 7538 (2014)
https://doi.org/10.1021/nn503000w
182 P. De Padova, J. Avila, A. Resta, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, P. Vogt, M. C. Asensio, and G. Le Lay, The quasiparticle band dispersion in epitaxial multilayer silicene, J. Phys.: Condens. Matter25(38), 382202 (2013)
https://doi.org/10.1088/0953-8984/25/38/382202
183 P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, T. Angot, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, A. Generosi, B. Paci, and G. Le Lay,24 h stability of thick multilayer silicene in air, 2D Mater.1(2), 021003 (2014)
https://doi.org/10.1088/2053-1583/1/2/021003
184 H. Li, X. Liao, G. Chen, D. J. Hill, Z. Dong, and T. Huang, Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks, Neural Netw. 66, 1 (2015)
https://doi.org/10.1016/j.neunet.2015.01.006
185 J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci.83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
186 K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature490(7419), 192 (2012)
https://doi.org/10.1038/nature11458
187 R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)
https://doi.org/10.1038/nmat2710
188 K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3), 1058 (2009)
https://doi.org/10.1021/nl8034256
189 B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
https://doi.org/10.1021/acs.jpcc.5b05035
190 H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)
https://doi.org/10.1103/PhysRevB.82.035416
191 L. Zhou, Z. F. Hou, B. Gao, and T. Frauenheim, Doped graphenes as anodes with large capacity for lithium-ion batteries, J. Mater. Chem. A 4(35), 13407 (2016)
https://doi.org/10.1039/C6TA04350J
192 T. Hu, M. Hu, B. Gao, W. Li, and X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation, J. Phys. Chem. C 122(32), 18501 (2018)
https://doi.org/10.1021/acs.jpcc.8b04427
193 J. Isberg, High carrier mobility in single-crystal plasmadeposited diamond, Science297(5587), 1670 (2002)
https://doi.org/10.1126/science.1074374
194 W. S. Verwoerd, A study of the dimer bond on the reconstructed (100) surfaces of diamond and silicon, Surf. Sci. 103(2–3), 404 (1981)
https://doi.org/10.1016/0039-6028(81)90273-9
195 K. Bobrov, A. J. Mayne, and G. Dujardin, Atomic-scale imaging of insulating diamond through resonant electron injection, Nature413(6856), 616 (2001)
https://doi.org/10.1038/35098053
196 S. Lu, D. Fan, C. Chen, Y. Mei, Y. Ma, and X. Hu, Ground-state structure of oxidized diamond (100) surface: An electronically nearly surface-free reconstruction, Carbon159, 9 (2020)
https://doi.org/10.1016/j.carbon.2019.12.003
197 T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperature-programmed desorption spectroscopy, J. Chem. Soc. Faraday Trans.89(19), 3635 (1993)
https://doi.org/10.1039/ft9938903635
198 P. John, N. Polwart, C. E. Troupe, and J. I. B. Wilson, The oxidation of diamond: The geometry and stretching frequency of carbonyl on the (100) surface, J. Am. Chem. Soc. 125(22), 6600 (2003)
https://doi.org/10.1021/ja029586a
199 H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, A. Imamura, M. N. -Gamo, and T. Ando, Periodic density-functional study on oxidation of diamond (100) surfaces., Phys. Rev. B61(16), 11025 (2000)
https://doi.org/10.1103/PhysRevB.61.11025
200 S. J. Sque, R. Jones, and P. R. Briddon, Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces, Phys. Rev. B 73(8), 085313 (2006)
https://doi.org/10.1103/PhysRevB.73.085313
201 H. Yang, L. Xu, C. Gu, and S. B. Zhang, First-principles study of oxygenated diamond (001) surfaces with and without hydrogen, Appl. Surf. Sci. 253(9), 4260 (2007)
https://doi.org/10.1016/j.apsusc.2006.09.035
202 F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light, J. Am. Chem. Soc. 132(34), 11856 (2010)
https://doi.org/10.1021/ja103843d
203 A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater.2(4), 16103 (2017)
https://doi.org/10.1038/natrevmats.2016.103
204 Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11(8), 1945 (2018)
https://doi.org/10.1039/C8EE01053F
205 K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki, Interfacial modification for high-power solid-state lithium batteries, Solid State Ion. 179(27–32), 1333 (2008)
https://doi.org/10.1016/j.ssi.2008.02.017
206 B. Gao, R. Jalem, Y. Ma, and Y. Tateyama, Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the firstprinciples structure prediction scheme, Chem. Mater.32(1), 85 (2020)
https://doi.org/10.1021/acs.chemmater.9b02311
207 C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi, Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy, Nano Lett. 16(11), 7030 (2016)
https://doi.org/10.1021/acs.nanolett.6b03223
208 Y. Zhu, J. G. Connell, S. Tepavcevic, P. Zapol, R. Garcia-Mendez, N. J. Taylor, J. Sakamoto, B. J. Ingram, L. A. Curtiss, J. W. Freeland, D. D. Fong, and N. M. Markovic, Dopant‐dependent stability of garnet solid electrolyte interfaces with lithium metal, Adv. Energy Mater.9(12), 1803440 (2019)
https://doi.org/10.1002/aenm.201803440
209 F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, and C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy4(3), 187 (2019)
https://doi.org/10.1038/s41560-018-0312-z
210 B. Gao, R. Jalem, and Y. Tateyama, Surface-dependent stability of the interface between garnet Li7La3Zr2O12 and the Li metal in the all-solid-state battery from first-principles calculations, ACS Appl. Mater. Interfaces12(14), 16350 (2020)
https://doi.org/10.1021/acsami.9b23019
211 Q. Tong, L. Xue, J. Lv, Y. Wang, and Y. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)
https://doi.org/10.1039/C8FD00055G
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed