Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (2): 22504   https://doi.org/10.1007/s11467-021-1111-8
  本期目录
Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network
Shurui Li1, Jianqin Xu1, Jing Qian1(), Weiping Zhang2,3,4
1. Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
2. School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
3. Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(2142 KB)  
Abstract

Deep learning, accounting for the use of an elaborate neural network, has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present work, we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks: Long Short-Term Memory (LSTM) and Deep Residual Network (ResNet), in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems. By taking the dynamics of Bose–Einstein condensates in a double-well potential as an example, we show that our new method makes a highly efficient pre-learning and a high-fidelity prediction about the whole dynamics. This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved with a single network in the case of direct learning. Our method can be applied for simulating complex cooperative dynamics in a system with fast multiplefrequency oscillations with the aid of auxiliary spectrum analysis.

Key wordsdouble-well    deep learning    hybrid neural network
收稿日期: 2021-05-13      出版日期: 2021-10-11
Corresponding Author(s): Jing Qian   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(2): 22504.
Shurui Li, Jianqin Xu, Jing Qian, Weiping Zhang. Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network. Front. Phys. , 2022, 17(2): 22504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1111-8
https://academic.hep.com.cn/fop/CN/Y2022/V17/I2/22504
1 I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N. Filippov, Machine learning non-Markovian quantum dynamics, Phys. Rev. Lett. 124(14), 140502 (2020)
2 X. Liu, G. Zhang, J. Li, G. Shi, M. Zhou, B. Huang, Y. Tang, X. Song, and W. Yang, Deep learning for Feynman’s path integral in strong-field time-dependent dynamics, Phys. Rev. Lett. 124(11), 113202 (2020)
3 G. Carleo and M. Troyer, Solving the quantum many body problem with artificial neural networks, Science 355(6325), 602 (2017)
4 A. Hentschel and B. C. Sanders, Machine learning for precise quantum measurement, Phys. Rev. Lett. 104(6), 063603 (2010)
5 P. Zhang, H. Shen, and H. Zhai, Machine learning topological invariants with neural networks, Phys. Rev. Lett. 120(6), 066401 (2018)
6 G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Neural-network quantum state tomography, Nat. Phys. 14(5), 447 (2018)
7 K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Machine learning phases of strongly correlated fermions, Phys. Rev. X 7(3), 031038 (2017)
8 E. van Nieuwenburg, Y. Liu, and S. D. Huber, Learning phase transitions by confusion, Nat. Phys. 13(5), 435 (2017)
9 J. Carrasquilla and R. Melko, Machine learning phases of matter, Nat. Phys. 13(5), 431 (2017)
10 S. Lu, L. Duan, and D. Deng, Quantum adversarial machine learning, Phys. Rev. Research 2(3), 033212 (2020)
11 X. Ouyang, X. Huang, Y. Wu, W. Zhang, X. Wang, H. Zhang, L. He, X. Chang, and L. Duan, Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system, Phys. Rev. A 101(1), 012307 (2020)
12 V. Dunjko, J. M. Taylor, and H. J. Briegel, Quantum enhanced machine learning, Phys. Rev. Lett. 117(13), 130501 (2016)
13 G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Contr. Signals Syst. 2(4), 303 (1989)
14 L. Ba and R. Caruana, Do deep nets really need to be deep? Adv. Neural Inf. Process. Syst. 3, 2654 (2014)
15 D. S. P. Salazar, Nonequilibrium thermodynamics of restricted Boltzmann machines, Phys. Rev. E 96(2), 022131 (2017)
16 G. Hinton, S. Osindero, and Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7), 1527 (2006)
17 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradientbased learning applied to document recognition, Proc. IEEE 86(11), 2278 (1998)
18 M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and J. Carrasquilla, Recurrent neural network wave functions, Phys. Rev. Research 2(2), 023358 (2020)
19 A. Diaz Rivero and C. Dvorkin, Direct detection of dark matter substructure in strong lens images with convolutional neural networks, Phys. Rev. D 101(2), 023515 (2020)
20 M. K. Mulimani, J. K. Alageshan, and R. Pandit, Deep learning-assisted detection and termination of spiral and broken-spiral waves in mathematical models for cardiac tissue, Phys. Rev. Research 2(2), 023155 (2020)
21 V. Novičenko, J. Ruseckas, and E. Anisimovas, Quantum dynamics in potentials with fast spatial oscillations, Phys. Rev. A 99(4), 043608 (2019)
22 C. E. Shannon, Communication in the presence of noise, Proceedings of the IRE 37(1), 10 (1949)
23 S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9(8), 1735 (1997)
24 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 (2016)
25 X. Liang, H. Zhang, S. Liu, Y. Li, and Y. S. Zhang, Generation of Bose–Einstein condensates’ ground state through machine learning, Sci. Rep. 8, 16337 (2018)
26 G. Spagnolli, G. Semeghini, L. Masi, G. Ferioli, A. Trenkwalder, S. Coop, M. Landini, L. Pezzè, G. Modugno, M. Inguscio, A. Smerzi, and M. Fattori, Crossing over from attractive to repulsive interactions in a tunneling bosonic Josephson junction, Phys. Rev. Lett. 118(23), 230403 (2017)
27 M. Pigneur and J. Schmiedmayer, Analytical pendulum model for a bosonic Josephson junction, Phys. Rev. A98(6), 063632 (2018)
28 S. Martínez-Garaot, G. Pettini, and M. Modugno, Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98(4), 043624 (2018)
29 J. Dobrzyniecki, and T. Sowiński, Effective two-mode description of a few ultra-cold bosons in a double-well potential, Phys. Lett. A 382(6), 394 (2018)
30 G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio, and G. Roati, Josephson effect in fermionic superfluids across the BEC–BCS crossover, Science 350(6267), 1505 (2015)
31 M. Jääskeläinen and P. Meystre, Dynamics of Bose–Einstein condensates in double-well potentials, Phys. Rev. A 71(4), 043603 (2005)
32 N. R. Thomas, A. C. Wilson, and C. J. Foot, Double-well magnetic trap for Bose–Einstein condensates, Phys. Rev. A 65(6), 063406 (2002)
33 R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose–Einstein condensate in a double-well potential, Phys. Rev. A 59(5), 3868 (1999)
34 H. M. Cataldo and D. M. Jezek, Dynamics in asymmetric double-well condensates, Phys. Rev. A 90(4), 043610 (2014)
35 Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Atom interferometry with Bose–Einstein condensates in a double-well potential, Phys. Rev. Lett. 92(5), 050405 (2004)
36 M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)
37 A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)
38 D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
39 J. D. Scargle, Studies in astronomical time series Analysis (iii) — Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data, Astrophys. J. 343, 874 (1989)
40 D. O. Pushkin, D. E. Melnikov, and V. M. Shevtsova, Ordering of small particles in one-dimensional coherent structures by time-periodic flows, Phys. Rev. Lett. 106(23), 234501 (2011)
41 F. Tajik, M. Sedighi, M. Khorrami, A. A. Masoudi, and G. Palasantzas, Chaotic behavior in Casimir oscillators: A case study for phase-change materials, Phys. Rev. E 96(4), 042215 (2017)
42 Z. Liu, Chaotic Dynamics Foundation and Its Application in Brain Functions, Beijing: Science Press, 2018
43 S. Efthymiou, M. J. S. Beach, and R. G. Melko, Superresolving the Ising model with convolutional neural networks, Phys. Rev. B 99(7), 075113 (2019)
44 Z. Li, S. Wu, J. Gao, H. Zhou, Z. Yan, R. Ren, S. Yin, and X. Jin, Fast correlated-photon imaging enhanced by deep learning, Optica 8(3), 323 (2021)
45 O. Vandans, K. Yang, Z. Wu, and L. Dai, Identifying knot types of polymer conformations by machine learning, Phys. Rev. E 101(2), 022502 (2020)
46 J. Liu, H. Ding, C. Zhang, S. Xie, and Q. Wang, Practical phase-modulation stabilization in quantum key distribution via machine learning, Phys. Rev. Appl. 12(1), 014059 (2019)
47 F. Milletari, N. Navab, and S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571 (2016)
48 L. Xie, Q. Yu, Y. Zhou, Y. Wang, E. K. Fishman, and A. L. Yuille, Recurrent saliency transformation network for tiny target segmentation in abdominal CT scans, IEEE Trans. Med. Imaging 39(2), 514 (2020)
49 J. Dobrzyniecki, X. Li, A. E. B. Nielsen, and T. Sowiński, Effective three-body interactions for bosons in a double well confinement, Phys. Rev. A 97(1), 013609 (2018)
50 B. Yun, Y. Wang, J. Chen, H. Wang, W. Shen, and Q. Li, SpecTr: Spectral transformer for hyperspectral pathology image segmentation, arXiv: 2103.03604 (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed