Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 32501   https://doi.org/10.1007/s11467-021-1119-0
  本期目录
Quantum control with Lyapunov function and bang–bang solution in the optomechanics system
Yu Wang1,2, Yi-Hao Kang1,2, Chang-Sheng Hu1,2, Bi-Hua Huang1,2, Jie Song3, Yan Xia1,2()
1. Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou 350108, China
2. Department of Physics, Fuzhou University, Fuzhou 350108, China
3. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(1903 KB)  
Abstract

We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang–bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.

Key wordsbang–bang solution    quantum control    Lyapunov control    optomechanics system
收稿日期: 2021-09-29      出版日期: 2021-11-01
Corresponding Author(s): Yan Xia   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 32501.
Yu Wang, Yi-Hao Kang, Chang-Sheng Hu, Bi-Hua Huang, Jie Song, Yan Xia. Quantum control with Lyapunov function and bang–bang solution in the optomechanics system. Front. Phys. , 2022, 17(3): 32501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1119-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/32501
1 T. J. Kippenberg and K. J. Vahala , Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172(2008)
https://doi.org/10.1126/science.1156032
2 M. Aspelmeyer , T. J. Kippenberg , and F. Marquardt , Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391(2014)
https://doi.org/10.1103/RevModPhys.86.1391
3 I. Wilson-Rae , N. Nooshi , W. Zwerger , and T. J. Kippenberg , Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901(2007)
https://doi.org/10.1103/PhysRevLett.99.093901
4 Y. C. Liu , Y. F. Xiao , X. S. Luan , and C. W. Wong , Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606(2013)
https://doi.org/10.1103/PhysRevLett.110.153606
5 X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602(2015)
https://doi.org/10.1103/PhysRevLett.114.093602
6 A. Szorkovszky , A. C. Doherty , G. I. Harris , and W. P. Bowen , Mechanical squeezing via parametric amplification and weak measurement, Phys. Rev. Lett. 107(21), 213603(2011)
https://doi.org/10.1103/PhysRevLett.107.213603
7 K. Jähne , C. Genes , K. Hammerer , M. Wallquist , E. S. Polzik , and P. Zoller , Cavity-assisted squeezing of a mechanical oscillator, Phys. Rev. A 79(6), 063819(2009)
https://doi.org/10.1103/PhysRevA.79.063819
8 M. Asjad , G. S. Agarwal , M. S. Kim , P. Tombesi , G. D. Giuseppe , and D. Vitali , Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A 89(2), 023849(2014)
https://doi.org/10.1103/PhysRevA.89.023849
9 X. L. Huang , T. Wang , and X. X. Yi , Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E 86(5), 051105(2012)
https://doi.org/10.1103/PhysRevE.86.051105
10 L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
https://doi.org/10.1103/PhysRevA.82.053806
11 C. Genes , D. Vitali , P. Tombesi , S. Gigan , and M. Aspelmeyer , Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A 77(3), 033804(2008)
https://doi.org/10.1103/PhysRevA.77.033804
12 A. Nunnenkamp , K. Børkje , J. G. E. Harris , and S. M. Girvin , Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806(2010)
https://doi.org/10.1103/PhysRevA.82.021806
13 S. Mancini , D. Vitali , and P. Tombesi , Optomechanical cooling of a macroscopic oscillator by homodyne feedback, Phys. Rev. Lett. 80(4), 688(1998)
https://doi.org/10.1103/PhysRevLett.80.688
14 R. W. Peterson , T. P. Purdy , N. S. Kampel , R. W. Andrews , P. L. Yu , K. W. Lehnert , and C. A. Regal , Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett. 116(6), 063601(2016)
https://doi.org/10.1103/PhysRevLett.116.063601
15 J. Y. Yang , D. Y. Wang , C. H. Bai , S. Y. Guan , X. Y. Gao , A. D. Zhu , and H. F. Wang , Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities, Opt. Express 27(16), 22855(2019)
https://doi.org/10.1364/OE.27.022855
16 F. Marquardt , J. P. Chen , A. A. Clerk , and S. M. Girvin , Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902(2007)
https://doi.org/10.1103/PhysRevLett.99.093902
17 A. H. Safavi-Naeini and O. Painter , Proposal for an optomechanical traveling wave phonon–photon translator, New J. Phys. 13(1), 013017(2011)
https://doi.org/10.1088/1367-2630/13/1/013017
18 K. Stannigel , P. Komar , S. J. M. Habraken , S. D. Bennett , M. D. Lukin , P. Zoller , and P. Rabl , Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603(2012)
https://doi.org/10.1103/PhysRevLett.109.013603
19 M. Tsang , Cavity quantum electro-optics (II): Inputoutput relations between traveling optical and microwave fields, Phys. Rev. A 84(4), 043845(2011)
https://doi.org/10.1103/PhysRevA.84.043845
20 X. W. Xu , Y. J. Zhao , and Y. X. Liu , Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325(2013)
https://doi.org/10.1103/PhysRevA.88.022325
21 X. W. Xu , Y. X. Liu , C. P. Sun , and Y. Li , Mechanical PT symmetry in coupled optomechanical systems, Phys. Rev. A 92(1), 013852(2015)
https://doi.org/10.1103/PhysRevA.92.013852
22 Y. D. Wang and A. A. Clerk , Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601(2013)
https://doi.org/10.1103/PhysRevLett.110.253601
23 V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
https://doi.org/10.1103/PhysRevLett.107.133601
24 Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
https://doi.org/10.1103/PhysRevLett.108.153603
25 S. S. U and A. Narayanan , Mechanical switch for state transfer in dual-cavity optomechanical systems., Phys. Rev. A 88(3), 033802(2013)
https://doi.org/10.1103/PhysRevA.88.033802
26 K. C. Schwab and M. L. Roukes , Putting mechanics into quantum mechanics, Phys. Today 58(7), 36(2005)
https://doi.org/10.1063/1.2012461
27 T. Kippenberg and K. Vahala , Cavity opto-mechanics, Opt. Express 15(25), 17172(2007)
https://doi.org/10.1364/OE.15.017172
28 V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. L. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
https://doi.org/10.1103/PhysRevLett.107.133601
29 Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
https://doi.org/10.1103/PhysRevLett.108.153603
30 S. Barzanjeh , M. Abdi , G. J. Milburn , P. Tombesi , and D. Vitali , Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109(13), 130503(2012)
https://doi.org/10.1103/PhysRevLett.109.130503
31 H. K. Li , X. X. Ren , Y. C. Liu , and Y. F. Xiao , Photonphoton interactions in a largely detuned optomechanical cavity, Phys. Rev. A 88(5), 053850(2013)
https://doi.org/10.1103/PhysRevA.88.053850
32 M. D. La Haye , O. Buu , B. Camarota , and K. C. Schwab , Approaching the quantum limit of a nanomechanical resonator, Science 304(5667), 74(2004)
https://doi.org/10.1126/science.1094419
33 J. J. Li and K. D. Zhu , All-optical mass sensing with coupled mechanical resonator systems, Phys. Rep. 525(3), 223(2013)
https://doi.org/10.1016/j.physrep.2012.11.003
34 B. Pepper , R. Ghobadi , E. Jeffrey , C. Simon , and D. Bouwmeester , Optomechanical superpositions via nested interferometry, Phys. Rev. Lett. 109(2), 023601(2012)
https://doi.org/10.1103/PhysRevLett.109.023601
35 P. Sekatski , M. Aspelmeyer , and N. Sangouard , Macroscopic optomechanics from displaced single-photon entanglement, Phys. Rev. Lett. 112(8), 080502(2014)
https://doi.org/10.1103/PhysRevLett.112.080502
36 A. Carlini , A. Hosoya , T. Koike , and Y. Okudaira , Timeoptimal quantum evolution, Phys. Rev. Lett. 96(6), 060503(2006)
https://doi.org/10.1103/PhysRevLett.96.060503
37 N. Khaneja , R. Brockett , and S. J. Glaser , Time optimal control in spin systems, Phys. Rev. A 63(3), 032308(2001)
https://doi.org/10.1103/PhysRevA.63.032308
38 P. D’ Alessandro and E. De Santis , Controlled invariance and feedback laws, IE EE Trans. Automat. Contr. 46(7), 1141(2001)
https://doi.org/10.1109/9.935072
39 J. P. Palao and R. Kosloff , Quantum computing by an optimal control algorithm for unitary transformations, Phys. Rev. Lett. 89(18), 188301(2002)
https://doi.org/10.1103/PhysRevLett.89.188301
40 M. Mirrahimi , P. Rouchon , and G. Turinici , Lyapunov control of bilinear Schrödinger equations, Automatica 41, 1987(2005)
https://doi.org/10.1016/j.automatica.2005.05.018
41 X. T. Wang and S. G. Schirmer , Entanglement generation between distant atoms by Lyapunov control, Phys. Rev. A 80(4), 042305(2009)
https://doi.org/10.1103/PhysRevA.80.042305
42 W. Wang , L. C. Wang , and X. X. Yi , Lyapunov control on quantum open systems in decoherence-free subspaces, Phys. Rev. A 82(3), 034308(2010)
https://doi.org/10.1103/PhysRevA.82.034308
43 Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100(1), 012339(2019)
https://doi.org/10.1103/PhysRevA.100.012339
44 C. H. Dong , V. Fiore , M. C. Kuzyk , and H. Wang , Optomechanical dark mode, Science 338(6114), 1609(2012)
https://doi.org/10.1126/science.1228370
45 D. Garg , A. K. Chauhan , and A. Biswas , Adiabatic transfer of energy fluctuations between membranes inside an optical cavity, Phys. Rev. A 96(2), 023837(2017)
https://doi.org/10.1103/PhysRevA.96.023837
46 Y. H. Chen , Z. C. Shi , J. Song , and Y. Xia , Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841(2018)
https://doi.org/10.1103/PhysRevA.97.023841
47 Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Deterministic conversions between Greenberger–Horne–Zeilinger states and W states of spin qubits via Lietransform-based inverse Hamiltonian engineering, Phys. Rev. A 100(1), 012332(2019)
https://doi.org/10.1103/PhysRevA.100.012332
48 Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IE EE J. Sel. Top. Quantum Electron. 26(3), 6700107(2020)
https://doi.org/10.1109/JSTQE.2019.2922830
49 Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322(2020)
https://doi.org/10.1103/PhysRevA.101.032322
50 Y. H. Kang , Y. H. Chen , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , One-step implementation of N‐qubit nonadiabatic holonomic quantum gates with superconducting qubits via inverse hamiltonian engineering, Ann. Phys. 531(7), 1800427(2019)
https://doi.org/10.1002/andp.201800427
51 Y. Wang , C. S. Hu , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Accelerated and noise‐resistant protocol of dissipation‐based Knill–Laflamme–Milburn state generation with Lyapunov control, Ann. Phys. 531(7), 1900006(2019)
https://doi.org/10.1002/andp.201900006
52 Y. H. Zhou , H. Z. Shen , and X. X. Yi , Unconventional photon blockade with second-order nonlinearity, Phys. Rev. A 92(2), 023838(2015)
https://doi.org/10.1103/PhysRevA.92.023838
53 Z. C. Zhang , J. C. Pei , Y. P. Wang , and X. G. Wang , Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys. 16(3), 32503(2021)
https://doi.org/10.1007/s11467-020-1030-0
54 X. B. Yan , H. L. Lu , F. Gao , F. Gao , and L. Yang , Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601(2019)
https://doi.org/10.1007/s11467-019-0922-3
55 M. M. Zhao , Z. Qian , B. P. Hou , Y. Liu , and Y. H. Zhao , Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601(2019)
https://doi.org/10.1007/s11467-019-0898-z
56 J. H. Liu , Y. B. Zhang , Y. F. Yu , and Z. M. Zhang , Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601(2019)
https://doi.org/10.1007/s11467-018-0861-4
57 S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17(2), 21502(2022)
https://doi.org/10.1007/s11467-021-1108-3
58 Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617(2020)
https://doi.org/10.1103/PhysRevA.102.022617
59 Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Effective discrimination of chiral molecules in a cavity, Opt. Lett. 45(17), 4952(2020)
https://doi.org/10.1364/OL.398859
60 D. D’ Alessandro , Introduction to Quantum Control and Dynamics, Taylor and Francis Group, Boca Raton, 2007
61 Z. C. Shi , X. L. Zhao , and X. X. Yi , Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control, Phys. Rev. A 91(3), 032301(2015)
https://doi.org/10.1103/PhysRevA.91.032301
62 X. X. Yi , X. L. Huang , C. F. Wu , and C. H. Oh , Driving quantum systems into decoherence-free subspaces by Lyapunov control, Phys. Rev. A 80(5), 052316(2009)
https://doi.org/10.1103/PhysRevA.80.052316
63 S. C. Hou , M. A. Khan , X. X. Yi , D. Dong , and I. R. Petersen , Optimal Lyapunov-based quantum control for quantum systems, Phys. Rev. A 86(2), 022321(2012)
https://doi.org/10.1103/PhysRevA.86.022321
64 J. T. Sheng , X. R. Wei , C. Yang , and H. B. Wu , Selforganized synchronization of phonon lasers, Phys. Rev. Lett. 124(5), 053604(2020)
https://doi.org/10.1103/PhysRevLett.124.053604
65 W. W. Zhou , S. G. Schirmer , M. Zhang , and H. Y. Dai , Bang–bang control design for quantum state transfer based on hyperspherical coordinates and optimal time–energy control, J. Phys. A Math. Theor. 44(10), 105303(2011)
https://doi.org/10.1088/1751-8113/44/10/105303
66 X. T. Wang , S. Vinjanampathy , F. W. Strauch , and K. Jacobs , Ultraefficient cooling of resonators: Beating sideband cooling with quantum control, Phys. Rev. Lett. 107(17), 177204(2011)
https://doi.org/10.1103/PhysRevLett.107.177204
67 L. Tian , Ground state cooling of a nanomechanical resonator via parametric linear coupling, Phys. Rev. B 79(19), 193407(2009)
https://doi.org/10.1103/PhysRevB.79.193407
68 K. Nishio , K. Kashima , and J. Imura , Effects of time delay in feedback control of linear quantum systems, Phys. Rev. A 79(6), 062105(2009)
https://doi.org/10.1103/PhysRevA.79.062105
69 X. X. Yi , S. L. Wu , C. Wu , X. L. Feng , and C. H. Oh , Time-delay effects and simplified control fields in quantum Lyapunov control, J. Phys. At. Mol. Opt. Phys. 44(19), 195503(2011)
https://doi.org/10.1088/0953-4075/44/19/195503
70 D. Stefanatos , J. Ruths , and J. S. Li , Frictionless atom cooling in harmonic traps: A time-optimal approach, Phys. Rev. A 82(6), 063422(2010)
https://doi.org/10.1103/PhysRevA.82.063422
71 X. J. Lu , X. Chen , J. Alonso , and J. G. Muga , Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang–singular–bang control, Phys. Rev. A 89(2), 023627(2014)
https://doi.org/10.1103/PhysRevA.89.023627
72 M. Palmero , E. Torrontegui , D. Guéry-Odelin , and J. G. Muga , Fast transport of two ions in an anharmonic trap, Phys. Rev. A 88(5), 053423(2013)
https://doi.org/10.1103/PhysRevA.88.053423
73 M. Palmero , R. Bowler , J. P. Gaebler , D. Leibfried , and J. G. Muga , Fast transport of mixed-species ion chains within a Paul trap, Phys. Rev. A 90(5), 053408(2014)
https://doi.org/10.1103/PhysRevA.90.053408
74 Y. C. Ding , T. Y. Huang , K. Paul , M. J. Hao , and X. Chen , Smooth bang–bang shortcuts to adiabaticity for atomic transport in a moving harmonic trap, Phys. Rev. A 101(6), 063410(2020)
https://doi.org/10.1103/PhysRevA.101.063410
75 S. Balasubramanian , S. Y. Han , B. T. Yoshimura , and J. K. Freericks , Bang–bang shortcut to adiabaticity in trapped-ion quantum simulators, Phys. Rev. A 97(2), 022313(2018)
https://doi.org/10.1103/PhysRevA.97.022313
76 D. Vitali , S. Gigan , A. Ferreira , H. R. Böhm , P. Tombesi , A. Guerreiro , V. Vedral , A. Zeilinger , and M. Aspelmeyer , Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405(2007)
https://doi.org/10.1103/PhysRevLett.98.030405
77 C. S. Hu , Z. Q. Liu , Y. Liu , L. T. Shen , H. Z. Wu , and S. B. Zheng , Entanglement beating in a cavity optomechanical system under two-field driving, Phys. Rev. A 101(3), 033810(2020)
https://doi.org/10.1103/PhysRevA.101.033810
78 G. De Chiara , M. Paternostro , and G. M. Palma , Entanglement detection in hybrid optomechanical systems, Phys. Rev. A 83(5), 052324(2011)
https://doi.org/10.1103/PhysRevA.83.052324
79 L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
https://doi.org/10.1103/PhysRevA.82.053806
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed