Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 31501   https://doi.org/10.1007/s11467-021-1120-7
  本期目录
Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system
Peng Wang1, Chang-Qi Yu1, Zi-Xu Wang1, Rui-Yang Yuan1, Fang-Fang Du2(), Bao-Cang Ren1()
1. Department of Physics, Capital Normal University, Beijing 100048, China
2. Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
 全文: PDF(2823 KB)  
Abstract

In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.

Key wordshyperdistillation    transmission loss    quantum channel noise    quantum communication    quantum information
收稿日期: 2021-09-23      出版日期: 2021-11-23
Corresponding Author(s): Fang-Fang Du,Bao-Cang Ren   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 31501.
Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys. , 2022, 17(3): 31501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1120-7
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/31501
1 N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
https://doi.org/10.1103/RevModPhys.74.145
2 X. M. Hu , Y. Guo , B. H. Liu , Y. F. Huang , C. F. Li , and G. C. Guo , Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4 (7), eaat9304 (2018)
https://doi.org/10.1126/sciadv.aat9304
3 A. K. Ekert , Quantum cryptography based on bells theorem, Phys. Rev. Lett. 67 (6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
4 D. Bruß and C. Macchiavello , Optimal eavesdropping in cryptography with three-dimensional quantum states, Phys. Rev. Lett. 88 (12), 127901 (2002)
https://doi.org/10.1103/PhysRevLett.88.127901
5 Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement–device–independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
https://doi.org/10.1007/s11467-020-1005-1
6 N. J. Cerf , M. Bourennane , A. Karlsson , and N. Gisin , Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88 (12), 127902 (2002)
https://doi.org/10.1103/PhysRevLett.88.127902
7 C. H. Bennett , G. Brassard , C. Crépeau , R. Jozsa , A. Peres , and W. K. Wootters , Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
8 C. H. Bennett and S. J. Wiesner , Communication via oneand two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
9 X. Liu , G. Long , D. Tong , and F. Li , General scheme for superdense coding between multiparties, Phys. Rev. A 65 (2), 022304 (2002)
https://doi.org/10.1103/PhysRevA.65.022304
10 M. Hillery , V. Bužek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
11 L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
https://doi.org/10.1103/PhysRevA.69.052307
12 G. L. Long and X. S. Liu , Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
13 F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
14 W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
15 Z. Zhou , Y. Sheng , P. Niu , L. Yin , G. Long , and L. Hanzo , Measurement–device–independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
https://doi.org/10.1007/s11433-019-1450-8
16 Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
https://doi.org/10.1007/s11467-020-1025-x
17 S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Three– step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
https://doi.org/10.1007/s11433-018-9224-5
18 G. L. Long and H. Zhang , Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing) 66 (13), 1267 (2021)
https://doi.org/10.1016/j.scib.2021.04.016
19 A. Yabushita and T. Kobayashi , Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69 (1), 013806 (2004)
https://doi.org/10.1103/PhysRevA.69.013806
20 C. Schuck , G. Huber , C. Kurtsiefer , and H. Weinfurter , Complete deterministic linear optics bell state analysis, Phys. Rev. Lett. 96 (19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
21 M. Barbieri , G. Vallone , P. Mataloni , and F. De Martini , Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement, Phys. Rev. A 75 (4), 042317 (2007)
https://doi.org/10.1103/PhysRevA.75.042317
22 G. Vallone , R. Ceccarelli , F. De Martini , and P. Mataloni , Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79 (3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
23 M. Barbieri , C. Cinelli , P. Mataloni , and F. De Martini , Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72 (5), 052110 (2005)
https://doi.org/10.1103/PhysRevA.72.052110
24 J. T. Barreiro , N. K. Langford , N. A. Peters , and P. G. Kwiat , Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95 (26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
25 J. T. Barreiro , T. C. Wei , and P. G. Kwiat , Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4 (4), 282 (2008)
https://doi.org/10.1038/nphys919
26 T. C. Ralph and A. Lund , Nondeterministic noiseless linear amplification of quantum systems, in: AIP Conference Proceedings 1110 (1), 155 (2009)
https://doi.org/10.1063/1.3131295
27 N. Gisin , S. Pironio , and N. Sangouard , Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105 (7), 070501 (2010)
https://doi.org/10.1103/PhysRevLett.105.070501
28 D. Pitkanen , X. Ma , R. Wickert , P. van Loock , and N. Lütkenhaus , Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84 (2), 022325 (2011)
https://doi.org/10.1103/PhysRevA.84.022325
29 C. Osorio , N. Bruno , N. Sangouard , H. Zbinden , N. Gisin , and R. Thew , Heralded photon amplification for quantum communication, Phys. Rev. A 86 (2), 023815 (2012)
https://doi.org/10.1103/PhysRevA.86.023815
30 S. Kocsis , G. Y. Xiang , T. C. Ralph , and G. J. Pryde , Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9 (1), 23 (2013)
https://doi.org/10.1038/nphys2469
31 M. Curty and T. Moroder , Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84 (1), 010304 (2011)
https://doi.org/10.1103/PhysRevA.84.010304
32 L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
https://doi.org/10.1016/j.scib.2019.10.025
33 S. Zhang , S. Yang , X. Zou , B. Shi , and G. Guo , Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86 (3), 034302 (2012)
https://doi.org/10.1103/PhysRevA.86.034302
34 G. Y. Xiang , T. C. Ralph , A. P. Lund , N. Walk , and G. J. Pryde , Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4 (5), 316 (2010)
https://doi.org/10.1038/nphoton.2010.35
35 L. Zhou and Y. B. Sheng , Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12 (4), 045203 (2015)
https://doi.org/10.1088/1612-2011/12/4/045203
36 F. Monteiro , E. Verbanis , V. C. Vivoli , A. Martin , N. Gisin , H. Zbinden , and R. Thew , Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2 (2), 024008 (2017)
https://doi.org/10.1088/2058-9565/aa70ad
37 T. J. Wang , C. Cao , and C. Wang , Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89 (5), 052303 (2014)
https://doi.org/10.1103/PhysRevA.89.052303
38 G. Yang , Y. S. Zhang , Z. R. Yang , L. Zhou , and Y. B. Sheng , Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state, Quantum Inform. Process. 18 (10), 317 (2019)
https://doi.org/10.1007/s11128-019-2432-1
39 D. Y. Chen , Z. Lin , M. Yang , Q. Yang , X. P. Zang , and Z. L. Cao , Distillation of lossy hyperentangled states, Phys. Rev. A 102 (2), 022425 (2020)
https://doi.org/10.1103/PhysRevA.102.022425
40 Y. Y. Jin , S. X. Qin , H. Zu , L. Zhou , W. Zhong , and Y. B. Sheng , Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13 (5), 130321 (2018)
https://doi.org/10.1007/s11467-018-0823-x
41 C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , and W. K. Wootters , Mixed-state entanglement and quantum error correction, Phys. Rev. A 54 (5), 3824 (1996)
https://doi.org/10.1103/PhysRevA.54.3824
42 J. W. Pan , C. Simon , Č. Brukner , and A. Zeilinger , Entanglement purification for quantum communication, Nature 410 (6832), 1067 (2001)
https://doi.org/10.1038/35074041
43 Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity, Phys. Rev. A 77 (4), 042308 (2008)
https://doi.org/10.1103/PhysRevA.77.042308
44 Y. B. Sheng and F. G. Deng , One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82 (4), 044305 (2010)
https://doi.org/10.1103/PhysRevA.82.044305
45 C. Wang , Y. Zhang , and G. S. Jin , Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities, Phys. Rev. A 84 (3), 032307 (2011)
https://doi.org/10.1103/PhysRevA.84.032307
46 B. C. Ren , F. F. Du , and F. G. Deng , Two-step hyperentanglement purification with the quantum-state-joining method, Phys. Rev. A 90 (5), 052309 (2014)
https://doi.org/10.1103/PhysRevA.90.052309
47 M. Zwerger , H. Briegel , and W. Dür , Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90 (1), 012314 (2014)
https://doi.org/10.1103/PhysRevA.90.012314
48 G. Y. Wang , T. Li , Q. Ai , A. Alsaedi , T. Hayat , and F. G. Deng , Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems, Phys. Rev. Appl. 10 (5), 054058 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054058
49 L. Zhou , W. Zhong , and Y. B. Sheng , Purification of the residual entanglement, Opt. Express 28 (2), 2291 (2020)
https://doi.org/10.1364/OE.383499
50 P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Feasible measurement-based entanglement purification in linear optics, Opt. Express 29 (6), 9363 (2021)
https://doi.org/10.1364/OE.420348
51 T. J. Wang , S. C. Mi , and C. Wang , Hyperentanglement purification using imperfect spatial entanglement, Opt. Express 25 (3), 2969 (2017)
https://doi.org/10.1364/OE.25.002969
52 P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17 (2), 21501 (2022)
https://doi.org/10.1007/s11467-021-1103-8
53 C. H. Bennett , H. J. Bernstein , S. Popescu , and B. Schumacher , Concentrating partial entanglement by local operations, Phys. Rev. A 53 (4), 2046 (1996)
https://doi.org/10.1103/PhysRevA.53.2046
54 Z. Zhao , J. W. Pan , and M. Zhan , Practical scheme for entanglement concentration, Phys. Rev. A 64 (1), 014301 (2001)
https://doi.org/10.1103/PhysRevA.64.014301
55 T. Yamamoto , M. Koashi , and N. Imoto , Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64 (1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
56 Y. B. Sheng , L. Zhou , and S. M. Zhao , Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A 85 (4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
57 Y. B. Sheng , L. Zhou , S. M. Zhao , and B. Y. Zheng , Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85 (1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
58 F. G. Deng , Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85 (2), 022311 (2012)
https://doi.org/10.1103/PhysRevA.85.022311
59 Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77 (6), 062325 (2008)
https://doi.org/10.1103/PhysRevA.77.062325
60 X. Yan , Y. F. Yu , and Z. M. Zhang , Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9 (5), 640 (2014)
https://doi.org/10.1007/s11467-014-0435-z
61 A. P. Liu , L. Y. Cheng , Q. Guo , S. L. Su , H. F. Wang , and S. Zhang , Heralded entanglement concentration of nonlocal photons assisted by double-sided optical microcavities, Phys. Scr. 94 (9), 095103 (2019)
https://doi.org/10.1088/1402-4896/ab021f
62 S. S. Chen , H. Zhang , Q. Ai , and G. J. Yang , Phononic entanglement concentration via optomechanical interactions, Phys. Rev. A 100 (5), 052306 (2019)
https://doi.org/10.1103/PhysRevA.100.052306
63 J. Liu , L. Zhou , W. Zhong , and Y. B. Sheng , Logic bell state concentration with parity check measurement, Front. Phys. 14 (2), 21601 (2019)
https://doi.org/10.1007/s11467-018-0866-z
64 B. C. Ren , F. F. Du , and F. G. Deng , Hyperentanglement concentration for two–photon four-qubit systems with linear optics, Phys. Rev. A 88 (1), 012302 (2013)
https://doi.org/10.1103/PhysRevA.88.012302
65 B. C. Ren and G. L. Long , General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22 (6), 6547 (2014)
https://doi.org/10.1364/OE.22.006547
66 L. L. Fan , Y. Xia , and J. Song , Efficient entanglement concentration for arbitrary less-hyperentanglement multi– photon W states with linear optics, Quantum Inform. Process. 13 (9), 1967 (2014)
https://doi.org/10.1007/s11128-014-0789-8
67 X. H. Li and S. Ghose , Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91 (6), 062302 (2015)
https://doi.org/10.1103/PhysRevA.91.062302
68 C. Cao , T. J. Wang , S. C. Mi , R. Zhang , and C. Wang , Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
https://doi.org/10.1016/j.aop.2016.03.003
69 H. J. Liu , Y. Xia , and J. Song , Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15 (5), 2033 (2016)
https://doi.org/10.1007/s11128-016-1258-3
70 B. C. Ren , H. Wang , F. Alzahrani , A. Hobiny , and F. G. Deng , Hyperentanglement concentration of nonlocal twophoton six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
https://doi.org/10.1016/j.aop.2017.07.013
71 M. Wang , J. Xu , F. Yan , and T. Gao , Entanglement concentration for polarization–spatial–time–bin hyperentangled bell states, Europhys. Lett. 123 (6), 60002 (2018)
https://doi.org/10.1209/0295-5075/123/60002
72 H. Wang , B. C. Ren , A. H. Wang , A. Alsaedi , T. Hayat , and F. G. Deng , General hyperentanglement concentration for polarization–spatial–time–bin multi-photon systems with linear optics, Front. Phys. 13 (5), 130315 (2018)
https://doi.org/10.1007/s11467-018-0801-3
73 X. Wang , X. Cai , Z. Su , M. Chen , D. Wu , L. Li , N. Liu , C. Lu , and J. W. Pan , Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518 (7540), 516 (2015)
https://doi.org/10.1038/nature14246
74 W. B. Gao , C. Y. Lu , X. C. Yao , P. Xu , O. Gühne , A. Goebel , Y. A. Chen , C. Z. Peng , Z. B. Chen , and J. W. Pan , Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6 (5), 331 (2010)
https://doi.org/10.1038/nphys1603
75 X. L. Wang , Y. H. Luo , H. L. Huang , M. C. Chen , Z. E. Su , C. Liu , C. Chen , W. Li , Y. Q. Fang , X. Jiang , J. Zhang , L. Li , N. L. Liu , C. Y. Lu , and J. W. Pan , 18-qubit entanglement with six photons three degrees of freedom, Phys. Rev. Lett. 120 (26), 260502 (2018)
https://doi.org/10.1103/PhysRevLett.120.260502
76 Y. B. Sheng , F. G. Deng , and G. L. Long , Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82 (3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed