Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 33503   https://doi.org/10.1007/s11467-021-1124-3
  本期目录
Dynamical properties of the Haldane chain with bond disorder
Jing-Kai Fang1,2, Jun-Han Huang1,2, Han-Qing Wu1,2(), Dao-Xin Yao1,2()
1. Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF(993 KB)  
Abstract

By using Lanczos exact diagonalization and quantum Monte Carlo combined with stochastic analytic continuation, we study the dynamical properties of the S = 1 antiferromagnetic Heisenberg chain with different strengths of bond disorder. In the weak disorder region, we find weakly coupled bonds which can induce additional low-energy excitation below the one-magnon mode. As the disorder increases, the average Haldane gap closes at δ ~ 0.5 with more and more low-energy excitations coming out. After the critical disorder strength δc ~ 1, the system reaches a random-singlet phase with prominent sharp peak at ω = 0 and broad continuum at ω > 0 of the dynamic spin structure factor. In addition, we analyze the distribution of random spin domains and numerically find three kinds of domains hosting effective spin-1/2 quanta or spin-1 sites in between. These “spins” can form the weakly coupled longrange singlets due to quantum fluctuation which contribute to the sharp peak at ω = 0.

Key wordsHaldane chain    Heisenberg model    magnetic excitation    quantum phase transition    random singlet    disorder    exact diagonalization    quantum Monte Carlo
收稿日期: 2021-06-13      出版日期: 2021-11-23
Corresponding Author(s): Han-Qing Wu,Dao-Xin Yao   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 33503.
Jing-Kai Fang, Jun-Han Huang, Han-Qing Wu, Dao-Xin Yao. Dynamical properties of the Haldane chain with bond disorder. Front. Phys. , 2022, 17(3): 33503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1124-3
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/33503
1 K. Binder and A. P. Young , Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys. 58 (4), 801 (1986)
https://doi.org/10.1103/RevModPhys.58.801
2 D. S. Fisher , Random antiferromagnetic quantum spin chains, Phys. Rev. B 50 (6), 3799 (1994)
https://doi.org/10.1103/PhysRevB.50.3799
3 R. B. Griffths , Nonanalytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23 (1), 17 (1969)
https://doi.org/10.1103/PhysRevLett.23.17
4 D. Basko , I. Aleiner , and B. Altshuler , Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321 (5), 1126 (2006)
https://doi.org/10.1016/j.aop.2005.11.014
5 D. A. Abanin , E. Altman , I. Bloch , and M. Serbyn , Manybody localization, thermalization, and entanglement, Rev. Mod. Phys. 91 (2), 021001 (2019)
https://doi.org/10.1103/RevModPhys.91.021001
6 G. Refael and J. E. Moore , Entanglement entropy of the random s = 1 Heisenberg chain, Phys. Rev. B 76 (2), 024419 (2007)
https://doi.org/10.1103/PhysRevB.76.024419
7 L. Liu , H. Shao , Y. C. Lin , W. Guo , and A. W. Sandvik , Random-singlet phase in disordered two-dimensional quantum magnets, Phys. Rev. X 8 (4), 041040 (2018)
https://doi.org/10.1103/PhysRevX.8.041040
8 H. Q. Wu , S. S. Gong , and D. N. Sheng , Randomnessinduced spin-liquid-like phase in the spin-1/2 J1–J2 triangular Heisenberg model, Phys. Rev. B 99 (8), 085141 (2019)
https://doi.org/10.1103/PhysRevB.99.085141
9 K. Uematsu and H. Kawamura , Randomness-induced quantum spin liquid behavior in the s = 1/2 randombond Heisenberg antiferromagnet on the pyrochlore lattice, Phys. Rev. Lett. 123 (8), 087201 (2019)
https://doi.org/10.1103/PhysRevLett.123.087201
10 H. Kawamura and K. Uematsu , Nature of the randomnessinduced quantum spin liquids in two dimensions, J. Phys.: Condens. Matter 31 (50), 504003 (2019)
https://doi.org/10.1088/1361-648X/ab400c
11 Z. Ma , Z. Y. Dong , S. Wu , Y. Zhu , S. Bao , Z. Cai , W. Wang , Y. Shangguan , J. Wang , K. Ran , D. Yu , G. Deng , R. A. Mole , H. F. Li , S. L. Yu , J. X. Li , and J. Wen , Disorder-induced spin-liquid-like behavior in kagome-lattice compounds, Phys. Rev. B 102 (22), 224415 (2020)
https://doi.org/10.1103/PhysRevB.102.224415
12 M. Wu , D. X. Yao , and H. Q. Wu , Exact diagonalization study of the anisotropic Heisenberg model related to YbMgGaO4, Phys. Rev. B 103 (20), 205122 (2021)
https://doi.org/10.1103/PhysRevB.103.205122
13 O. Motrunich , S. C. Mau , D. A. Huse , and D. S. Fisher , Infinite-randomness quantum Ising critical fixed points, Phys. Rev. B 61, 1160 (2000)
https://doi.org/10.1103/PhysRevB.61.1160
14 E. Westerberg , A. Furusaki , M. Sigrist , and P. A. Lee , Low-energy fixed points of random quantum spin chains, Phys. Rev. B 55 (18), 12578 (1997)
https://doi.org/10.1103/PhysRevB.55.12578
15 S. K. Ma , C. Dasgupta , and C. K. Hu , Random antiferromagnetic chain, Phys. Rev. Lett. 43 (19), 1434 (1979)
https://doi.org/10.1103/PhysRevLett.43.1434
16 F. Iglói and C. Monthus , Strong disorder RG approach – a short review of recent developments, Eur. Phys. J. B 91 (11), 290 (2018)
https://doi.org/10.1140/epjb/e2018-90434-8
17 R. A. Hyman , K. Yang , R. N. Bhatt , and S. M. Girvin , Random bonds and topological stability in gapped quantum spin chains, Phys. Rev. Lett. 76 (5), 839 (1996)
https://doi.org/10.1103/PhysRevLett.76.839
18 F. D. M. Haldane , Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50 (15), 1153 (1983)
https://doi.org/10.1103/PhysRevLett.50.1153
19 F. D. M. Haldane , Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Phys. Lett. A 93 (9), 464 (1983)
https://doi.org/10.1016/0375-9601(83)90631-X
20 K. Damle , Griffths effects in random Heisenberg antiferromagnetic S = 1 chains, Phys. Rev. B 66 (10), 104425 (2002)
https://doi.org/10.1103/PhysRevB.66.104425
21 Y. R. Shu , D. X. Yao , C. W. Ke , Y. C. Lin , and A. W. Sandvik , Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valencebond solid, Phys. Rev. B 94 (17), 174442 (2016)
https://doi.org/10.1103/PhysRevB.94.174442
22 E. Westerberg , A. Furusaki , M. Sigrist , and P. A. Lee , Random quantum spin chains: A real-space renormalization group study, Phys. Rev. Lett. 75 (23), 4302 (1995)
https://doi.org/10.1103/PhysRevLett.75.4302
23 T. Hikihara , A. Furusaki , and M. Sigrist , Numerical renormalization-group study of spin correlations in onedimensional random spin chains, Phys. Rev. B. 60 (17), 12116 (1999)
https://doi.org/10.1103/PhysRevB.60.12116
24 C. Monthus , O. Golinelli , and Th. Jolicoeur , Percolation transition in the random antiferromagnetic spin-1 chain, Phys. Rev. Lett. 79, 3254 (1997)
https://doi.org/10.1103/PhysRevLett.79.3254
25 C. Monthus , O. Golinelli , and T. Jolicoeur , Phases of random antiferromagnetic spin-1 chains, Phys. Rev. B 58 (2), 805 (1998)
https://doi.org/10.1103/PhysRevB.58.805
26 H. L. C. Grande , N. Laorencie , F. Alet , and A. P. Vieira , Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings, Phys. Rev. B 89, 134408 (2014)
https://doi.org/10.1103/PhysRevB.89.134408
27 R. A. Hyman and K. Yang , Impurity driven phase transition in the antiferromagnetic spin-1 chain, Phys. Rev. Lett. 78 (9), 1783 (1997)
https://doi.org/10.1103/PhysRevLett.78.1783
28 A. Saguia , B. Boechat , and M. A. Continentino , Strongly disordered antiferromagnetic spin-1 chains with random anisotropy, Phys. Rev. B 58 (1), 58 (1998)
https://doi.org/10.1103/PhysRevB.58.58
29 A. Saguia , B. Boechat , and M. A. Continentino , Phase diagram of the random Heisenberg antiferromagnetic spin- 1 chain, Phys. Rev. Lett. 89 (11), 117202 (2002)
https://doi.org/10.1103/PhysRevLett.89.117202
30 A. Saguia , B. Boechat , and M. A. Continentino , Quantum phase transition in the random antiferromagnetic spin-1 chain, Phys. Rev. B 62 (9), 5541 (2000)
https://doi.org/10.1103/PhysRevB.62.5541
31 Y. Nishiyama , Numerical analysis of the bond-random antiferromagnetic S=1 Heisenberg chain, Physica A 252 (1-2), 35 (1998)
https://doi.org/10.1016/S0378-4371(97)00616-X
32 K. Hida , Density matrix renormalization group study of the Haldane phase in random one-dimensional antiferromagnets, Phys. Rev. Lett. 83 (16), 3297 (1999)
https://doi.org/10.1103/PhysRevLett.83.3297
33 P. Lajkó , E. Carlon , H. Rieger , and F. Iglói , Disorderinduced phases in the S=1 antiferromagnetic Heisenberg chain, Phys. Rev. B 72, 094205 (2005)
https://doi.org/10.1103/PhysRevB.72.094205
34 Z. L. Tsai , P. Chen , and Y. C. Lin , Tensor network renormalization group study of spin-1 random Heisenberg chains, Eur. Phys. J. B 93 (4), 63 (2020)
https://doi.org/10.1140/epjb/e2020-100585-8
35 A. M. Goldsborough and R. Römer , Self-assembling tensor networks and holography in disordered spin chains, Phys. Rev. B 89 (21), 214203 (2014)
https://doi.org/10.1103/PhysRevB.89.214203
36 S. Bergkvist , P. Henelius , and A. Rosengren , Ground state of the random-bond spin-1 Heisenberg chain, Phys. Rev. B 66 (13), 134407 (2002)
https://doi.org/10.1103/PhysRevB.66.134407
37 T. Arakawa , S. Todo , and H. Takayama , Randomnessdriven quantum phase transition in bond-alternating Haldane chain, J. Phys. Soc. Jpn. 74 (4), 1127 (2005)
https://doi.org/10.1143/JPSJ.74.1127
38 E. S. Sϕrensen and I. Affleck , Equal-time correlations in Haldane-gap antiferromagnets, Phys. Rev. B 49 (22), 15771 (1994)
https://doi.org/10.1103/PhysRevB.49.15771
39 F. Iglói and C. Monthus , Strong disorder RG approach of random systems, Phys. Rep. 412 (5-6), 277 (2005)
https://doi.org/10.1016/j.physrep.2005.02.006
40 F. Iglói , R. Juhász , and P. Lajkó , Griffths–McCoy singularities in random quantum spin chains: Exact results through renormalization, Phys. Rev. Lett. 86 (7), 1343 (2001)
https://doi.org/10.1103/PhysRevLett.86.1343
41 Y. R. Shu , M. Dupont , D. X. Yao , S. Capponi , and A. W. Sandvik , Dynamical properties of the S = 1/2 random Heisenberg chain, Phys. Rev. B 97 (10), 104424 (2018)
https://doi.org/10.1103/PhysRevB.97.104424
42 E. Yusuf and K. Yang , Dynamics of weakly coupled random antiferromagnetic quantum spin chains, Phys. Rev. B 72 (2), 020403 (2005)
https://doi.org/10.1103/PhysRevB.72.020403
43 T. Masuda , A. Zheludev , K. Uchinokura , J. H. Chung , and S. Park , Dynamics and scaling in a quantum spin chain material with bond randomness, Phys. Rev. Lett. 93 (7), 077206 (2004)
https://doi.org/10.1103/PhysRevLett.93.077206
44 A. W. Sandvik , Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135 (2010)
https://doi.org/10.1063/1.3518900
45 A. W. Sandvik , Classical percolation transition in the diluted two-dimensional S = 1/2 Heisenberg antiferromagnet, Phys. Rev. B 66 (2), 024418 (2002)
https://doi.org/10.1103/PhysRevB.66.024418
46 P. Henelius , A. W. Sandvik , C. Timm , and S. M. Girvin , Monte Carlo study of a two-dimensional quantum ferromagnet, Phys. Rev. B 61 (1), 364 (2000)
https://doi.org/10.1103/PhysRevB.61.364
47 O. F. Syljuåsen and A. W. Sandvik , Quantum Monte Carlo with directed loops, Phys. Rev. E 66 (4), 046701 (2002)
https://doi.org/10.1103/PhysRevE.66.046701
48 A. W. Sandvik , Stochastic series expansion method with operator-loop update, Phys. Rev. B 59 (22), R14157 (1999)
https://doi.org/10.1103/PhysRevB.59.R14157
49 A. Dorneich and M. Troyer , Accessing the dynamics of large many-particle systems using the stochastic series expansion, Phys. Rev. E 64 (6), 066701 (2001)
https://doi.org/10.1103/PhysRevE.64.066701
50 M. Hohenadler , Z. Y. Meng , T. C. Lang , S. Wessel , A. Muramatsu , and F. F. Assaad , Quantum phase transitions in the Kane–Mele–Hubbard model, Phys. Rev. B 85 (11), 115132 (2012)
https://doi.org/10.1103/PhysRevB.85.115132
51 M. Takahashi , Spin-correlation function of the S=1 antiferromagnetic Heisenberg chain at T=0, Phys. Rev. B 38 (7), 5188 (1988)
https://doi.org/10.1103/PhysRevB.38.5188
52 A. W. Sandvik , Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57 (17), 10287 (1998)
https://doi.org/10.1103/PhysRevB.57.10287
53 A. W. Sandvik , Constrained sampling method for analytic continuation, Phys. Rev. E 94 (6), 063308 (2016)
https://doi.org/10.1103/PhysRevE.94.063308
54 A. W. Sandvik and R. R. P. Singh , High-energy magnon dispersion and multimagnon continuum in the twodimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86 (3), 528 (2001)
https://doi.org/10.1103/PhysRevLett.86.528
55 H. Shao , Y. Q. Qin , S. Capponi , S. Chesi , Z. Y. Meng , and A. W. Sandvik , Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7 (4), 041072 (2017)
https://doi.org/10.1103/PhysRevX.7.041072
56 S. Grossjohann and W. Brenig , Spin dynamics of the antiferromagnetic spin-1/2 chain at finite magnetic fields and intermediate temperatures, Phys. Rev. B 79 (9), 094409 (2009)
https://doi.org/10.1103/PhysRevB.79.094409
57 S. Ma , C. Broholm , D. H. Reich , B. J. Sternlieb , and R. W. Erwin , Dominance of long-lived excitations in the antiferromagnetic spin-1 chain NENP, Phys. Rev. Lett. 69 (24), 3571 (1992)
https://doi.org/10.1103/PhysRevLett.69.3571
58 I. A. Zaliznyak , S. H. Lee , and S. V. Petrov , Continuum in the spin-excitation spectrum of a Haldane chain observed by neutron scattering in CsNiCl3, Phys. Rev. Lett. 87 (1), 017202 (2001)
https://doi.org/10.1103/PhysRevLett.87.017202
59 M. Kenzelmann , R. A. Cowley , W. J. L. Buyers , R. Coldea , J. S. Gardner , M. Enderle , D. F. McMorrow , and S. M. Bennington , Multiparticle states in the S = 1 chain system CsNiCl3, Phys. Rev. Lett. 87 (1), 017201 (2001)
https://doi.org/10.1103/PhysRevLett.87.017201
60 S. R. White and I. Affleck , Spectral function for the S = 1 Heisenberg antiferromagetic chain, Phys. Rev. B 77 (13), 134437 (2008)
https://doi.org/10.1103/PhysRevB.77.134437
61 J. Becker , T. Köhler , A. C. Tiegel , S. R. Manmana , S. Wessel , and A. Honecker , Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains, Phys. Rev. B 96 (6), 060403 (2017)
https://doi.org/10.1103/PhysRevB.96.060403
62 J. H. Huang , G. M. Zhang , and D. X. Yao , Dynamical spin excitations of the topological Haldane gapped phase in the S = 1 Heisenberg antiferromagnetic chain with single-ion anisotropy, Phys. Rev. B 103 (2), 024403 (2021)
https://doi.org/10.1103/PhysRevB.103.024403
63 G. Refael , S. Kehrein , and D. S. Fisher , Spin reduction transition in spin-3/2 random Heisenberg chains, Phys. Rev. B 66 (6), 060402 (2002)
https://doi.org/10.1103/PhysRevB.66.060402
64 K. Damle and D. A. Huse , Permutation-symmetric multicritical points in random antiferromagnetic spin chains, Phys. Rev. Lett. 89 (27), 277203 (2002)
https://doi.org/10.1103/PhysRevLett.89.277203
65 E. Carlon , P. Lajkó , H. Rieger , and F. Iglói , Disorderinduced phases in higher-spin antiferromagnetic Heisenberg chains, Phys. Rev. B 69 (14), 144416 (2004)
https://doi.org/10.1103/PhysRevB.69.144416
66 F. Iglói and C. Monthus , Strong disorder RG approach of random systems, Phys. Rep. 412 (5-6), 277 (2005)
https://doi.org/10.1016/j.physrep.2005.02.006
67 A. Saguia , B. Boechat , and M. A. Continentino , Spin-3/2 random quantum antiferromagnetic chains, Phys. Rev. B 68 (2), 020403 (2003)
https://doi.org/10.1103/PhysRevB.68.020403
68 A. Saguia , B. Boechat , M. A. Continentino , and O. F. de Alcantara Bonfim , Breakdown of the perturbative renormalization group for S > 1 random antiferromagnetic spin chains, Phys. Rev. B 63 (5), 052414 (2001)
https://doi.org/10.1103/PhysRevB.63.052414
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed