Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 33201   https://doi.org/10.1007/s11467-021-1125-2
  本期目录
Recent progresses of quantum confinement in graphene quantum dots
Si-Yu Li1(), Lin He2()
1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(4585 KB)  
Abstract

Graphene quantum dots (GQDs) not only have potential applications on spin qubit, but also serve as essential platforms to study the fundamental properties of Dirac fermions, such as Klein tunneling and Berry phase. By now, the study of quantum confinement in GQDs still attract much attention in condensed matter physics. In this article, we review the experimental progresses on quantum confinement in GQDs mainly by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Here, the GQDs are divided into Klein GQDs, bound-state GQDs and edge-terminated GQDs according to their different confinement strength. Based on the realization of quasi-bound states in Klein GQDs, external perpendicular magnetic field is utilized as a manipulation approach to trigger and control the novel properties by tuning Berry phase and electron–electron (e–e) interaction. The tip-induced edge-free GQDs can serve as an intuitive mean to explore the broken symmetry states at nanoscale and single-electron accuracy, which are expected to be used in studying physical properties of different two-dimensional materials. Moreover, high-spin magnetic ground states are successfully introduced in edge-terminated GQDs by designing and synthesizing triangulene zigzag nanographenes.

Key wordsgraphene quantum dot    scanning tunneling microscopy    scanning tunneling spectroscopy    quasi-bound state    bound state    triangulene
收稿日期: 2021-09-09      出版日期: 2021-11-23
Corresponding Author(s): Si-Yu Li,Lin He   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 33201.
Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots. Front. Phys. , 2022, 17(3): 33201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1125-2
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/33201
1 D. Loss and D. P. DiVincenzo , Quantum computation with quantum dots, Phys. Rev. A 57 (1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
2 J. Elzerman , R. Hanson , L. W. Van Beveren , B. Witkamp , L. Vandersypen , and L. P. Kouwenhoven , Single-shot read-out of an individual electron spin in a quantum dot, Nature 430, 431 (2004)
https://doi.org/10.1038/nature02693
3 R. Hanson , L. W. van Beveren , I. Vink , J. Elzerman , W. Naber , F. Koppens , L. Kouwenhoven , and L. Vandersypen , Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates, Phys. Rev. Lett. 94 (19), 196802 (2005)
https://doi.org/10.1103/PhysRevLett.94.196802
4 F. H. Koppens , C. Buizert , K. J. Tielrooij , I. T. Vink , K. C. Nowack , T. Meunier , L. Kouwenhoven , and L. Vandersypen , Driven coherent oscillations of a single electron spin in a quantum dot, Nature 442 (7104), 766 (2006)
https://doi.org/10.1038/nature05065
5 J. R. Petta , A. C. Johnson , J. M. Taylor , E. A. Laird , A. Yacoby , M. D. Lukin , C. M. Marcus , M. P. Hanson , and A. C. Gossard , Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309 (5744), 2180 (2005)
https://doi.org/10.1126/science.1116955
6 B. Trauzettel , D. V. Bulaev , D. Loss , and G. Burkard , Spin qubits in graphene quantum dots, Nat. Phys. 3 (3), 192 (2007)
https://doi.org/10.1038/nphys544
7 J. Lee , D. Wong , J. F. Jr Velasco , S. Rodriguez-Nieva , H. Z. Kahn , T. Tsai , K. Taniguchi , A. Watanabe , Zettl , F. Wang , L. S. Levitov , and M. F. Crommie , Imaging electrostatically confined Dirac fermions in graphene quantum dots, Nat. Phys. 12 (11), 1032 (2016)
https://doi.org/10.1038/nphys3805
8 C. Gutiérrez , L. Brown , C. J. Kim , J. Park , and A. N. Pasupathy , Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots, Nat. Phys. 12 (11), 1069 (2016)
https://doi.org/10.1038/nphys3806
9 P. G. Silvestrov and K. B. Efetov , Quantum dots in graphene, Phys. Rev. Lett. 98 (1), 016802 (2007)
https://doi.org/10.1103/PhysRevLett.98.016802
10 K. K. Bai , J. J. Zhou , Y. C. Wei , J. B. Qiao , Y. W. Liu , H. W. Liu , H. Jiang , and L. He , Generating atomically sharp p–n junctions in graphene and testing quantum electron optics on the nanoscale, Phys. Rev. B 97 (4), 045413 (2018)
https://doi.org/10.1103/PhysRevB.97.045413
11 Y. Jiang , J. Mao , D. Moldovan , M. R. Masir , G. Li , K. Watanabe , T. Taniguchi , F. M. Peeters , and E. Y. Andrei , Tuning a circular p–n junction in graphene from quantum confinement to optical guiding, Nat. Nanotechnol. 12 (11), 1045 (2017)
https://doi.org/10.1038/nnano.2017.181
12 F. Ghahari , D. Walkup , C. Gutiérrez , J. F. RodriguezNieva , Y. Zhao , J. Wyrick , F. D. Natterer , W. G. Cullen , K. Watanabe , T. Taniguchi , L. S. Levitov , N. B. Zhitenev , and J. A. Stroscio , An on/off Berry phase switch in circular graphene resonators, Science 356 (6340), 845 (2017)
https://doi.org/10.1126/science.aal0212
13 Y. W. Liu , Z. Hou , S. Y. Li , Q. F. Sun , and L. He , Movable valley switch driven by Berry phase in bilayergraphene resonators, Phys. Rev. Lett. 124 (16), 166801 (2020)
https://doi.org/10.1103/PhysRevLett.124.166801
14 Z. Q. Fu , K. K. Bai , Y. N. Ren , J. J. Zhou , and L. He , Coulomb interaction in quasibound states of graphene quantum dots, Phys. Rev. B 101 (23), 235310 (2020)
https://doi.org/10.1103/PhysRevB.101.235310
15 Y. Zhao , J. Wyrick , F. D. Natterer , J. F. RodriguezNieva , C. Lewandowski , K. Watanabe , T. Taniguchi , L. S. Levitov , N. B. Zhitenev , and J. A. Stroscio , Creating and probing electron whispering-gallery modes in graphene, Science 348 (6235), 672 (2015)
https://doi.org/10.1126/science.aaa7469
16 N. M. Freitag , L. A. Chizhova , P. Nemes-Incze , C. R. Woods , R. V. Gorbachev , Y. Cao , A. K. Geim , K. S. Novoselov , J. Burgdorfer , F. Libisch , and M. Morgenstern , Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings, Nano Lett. 16 (9), 5798 (2016)
https://doi.org/10.1021/acs.nanolett.6b02548
17 S. Y. Li , Y. Su , Y. N. Ren , and L. He , Valley polarization and inversion in strained Graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states, Phys. Rev. Lett. 124 (10), 106802 (2020)
https://doi.org/10.1103/PhysRevLett.124.106802
18 L. A. Ponomarenko , F. Schedin , M. I. Katsnelson , R. Yang , E. W. Hill , K. S. Novoselov , and A. K. Geim , Chaotic Dirac billiard in graphene quantum dots, Science 320 (5874), 356 (2008)
https://doi.org/10.1126/science.1154663
19 S. Mishra , D. Beyer , K. Eimre , J. Liu , R. Berger , O. Gröning , C. A. Pignedoli , K. Müllen , R. Fasel , X. Feng , and P. Ruffeux , Synthesis and characterization of π-extended triangulene, J. Am. Chem. Soc. 141 (27), 10621 (2019)
https://doi.org/10.1021/jacs.9b05319
20 S. Mishra , D. Beyer , K. Eimre , R. Ortiz , J. Fernández‐Rossier , R. Berger , O. Gröning , C. A. Pignedoli , R. Fasel , X. Feng , and P. Ruffeux , Collective all‐carbon magnetism in triangulene dimers, Angew. Chem. Int. Ed. 59 (29), 12041 (2020)
https://doi.org/10.1002/anie.202002687
21 J. Su , M. Telychko , P. Hu , G. Macam , P. Mutombo , H. Zhang , Y. Bao , F. Cheng , Z. Q. Huang , Z. Qiu , S. J. R. Tan , H. Lin , P. Jelínek , F. C. Chuang , J. Wu , and J. Lu , Atomically precise bottom-up synthesis of π-extended [5]triangulene, Sci. Adv. 5 (7), eaav7717 (2019)
https://doi.org/10.1126/sciadv.aav7717
22 N. M. Freitag , T. Reisch , L. A. Chizhova , P. Nemes-Incze , C. Holl , C. R. Woods , R. V. Gorbachev , Y. Cao , A. K. Geim , K. S. Novoselov , J. Burgdörfer , F. Libisch , and M. Morgenstern , Large tunable valley splitting in edge-free graphene quantum dots on boron nitride, Nat. Nanotechnol. 13 (5), 392 (2018)
https://doi.org/10.1038/s41565-018-0080-8
23 S.-Y. Li , Y.-N. Ren , Y.-W. Liu , M.-X. Chen , H. Jiang , and L. He , Nanoscale detection of valley-dependent spin splitting around atomic defects of graphene, 2D Mater. 6, 031005 (2019)
https://doi.org/10.1088/2053-1583/ab2074
24 S. Jung , G. M. Rutter , N. N. Klimov , D. B. Newell , I. Calizo , A. R. Hight-Walker , N. B. Zhitenev , and J. A. Stroscio , Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots, Nat. Phys. 7 (3), 245 (2011)
https://doi.org/10.1038/nphys1866
25 A. H. Castro Neto , F. Guinea , N. M. R. Peres , K. S. Novoselov , and A. K. Geim , The electronic properties of graphene, Rev. Mod. Phys. 81 (1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
26 M. Katsnelson , K. Novoselov , and A. Geim , Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2 (9), 620 (2006)
https://doi.org/10.1038/nphys384
27 V. Pereira , F. Mlinar , F. M. Peeters , and P. Vasilopoulos , Confined states and direction-dependent transmission in graphene quantum wells, Phys. Rev. B 74 (4), 045424 (2006)
https://doi.org/10.1103/PhysRevB.74.045424
28 M. Barbier , F. Peeters , P. Vasilopoulos , and Pereira , Dirac and Klein-Gordon particles in one-dimensional periodic potentials, Phys. Rev. B 77 (11), 115446 (2008)
https://doi.org/10.1103/PhysRevB.77.115446
29 A. V. Shytov , M. S. Rudner , and L. S. Levitov , Klein backscattering and Fabry–Pérot interference in graphene heterojunctions, Phys. Rev. Lett. 101 (15), 156804 (2008)
https://doi.org/10.1103/PhysRevLett.101.156804
30 N. Stander , B. Huard , and D. Goldhaber-Gordon , Evidence for Klein tunneling in graphene p–n junctions, Phys. Rev. Lett. 102 (2), 026807 (2009)
https://doi.org/10.1103/PhysRevLett.102.026807
31 A. F. Young and P. Kim , Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5 (3), 222 (2009)
https://doi.org/10.1038/nphys1198
32 J. H. Bardarson , M. Titov , and P. Brouwer , Electrostatic confinement of electrons in an integrable graphene quantum dot, Phys. Rev. Lett. 102 (22), 226803 (2009)
https://doi.org/10.1103/PhysRevLett.102.226803
33 H. Y. Chen , V. Apalkov , and T. Chakraborty , Fockdarwin states of Dirac electrons in graphene-based artificial atoms, Phys. Rev. Lett. 98 (18), 186803 (2007)
https://doi.org/10.1103/PhysRevLett.98.186803
34 C. Downing , D. Stone , and M. Portnoi , Zero-energy states in graphene quantum dots and rings, Phys. Rev. B 84 (15), 155437 (2011)
https://doi.org/10.1103/PhysRevB.84.155437
35 A. Matulis and F. Peeters , Quasibound states of quantum dots in single and bilayer graphene, Phys. Rev. B 77 (11), 115423 (2008)
https://doi.org/10.1103/PhysRevB.77.115423
36 C. Schulz , R. Heinisch , and H. Fehske , Scattering of twodimensional Dirac fermions on gate-defined oscillating quantum dots, Phys. Rev. B 91 (4), 045130 (2015)
https://doi.org/10.1103/PhysRevB.91.045130
37 J. S. Wu and M. M. Fogler , Scattering of two-dimensional massless Dirac electrons by a circular potential barrier, Phys. Rev. B 90 (23), 235402 (2014)
https://doi.org/10.1103/PhysRevB.90.235402
38 H. Ji , Y. Pan , and H. Liu , Evolution of quasi-bound states in the circular n–p junction of bilayer graphene under magnetic field, Sci. Rep. 10 (1), 16256 (2020)
https://doi.org/10.1038/s41598-020-73377-6
39 Y. Pan , H. Ji , X. Q. Li , and H. Liu , Quasi-bound states in an NPN-type nanometer-scale graphene quantum dot under a magnetic field, Sci. Rep. 10 (1), 20426 (2020)
https://doi.org/10.1038/s41598-020-77357-8
40 J. Zhou , S. Cheng , W. You , and H. Jiang , Numerical study of Klein quantum dots in graphene systems, Sci. China Phys. Mech. Astron. 62 (6), 67811 (2019)
https://doi.org/10.1007/s11433-018-9314-2
41 S. M. Reimann and M. Manninen , Electronic structure of quantum dots, Rev. Mod. Phys. 74 (4), 1283 (2002)
https://doi.org/10.1103/RevModPhys.74.1283
42 C. Gutiérrez , D. Walkup , F. Ghahari , C. Lewandowski , J. F. Rodriguez-Nieva , K. Watanabe , T. Taniguchi , L. S. Levitov , N. B. Zhitenev , and J. A. Stroscio , Interactiondriven quantum Hall wedding cake-like structures in graphene quantum dots, Science 361 (6404), 789 (2018)
https://doi.org/10.1126/science.aar2014
43 J. F. Rodriguez-Nieva and L. S. Levitov , Berry phase jumps and giant nonreciprocity in Dirac quantum dots, Phys. Rev. B 94 (23), 235406 (2016)
https://doi.org/10.1103/PhysRevB.94.235406
44 P. McEuen , E. Foxman , J. Kinaret , U. Meirav , M. Kastner , N. S. Wingreen , and S. Wind , Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime, Phys. Rev. B 45 (19), 11419 (1992)
https://doi.org/10.1103/PhysRevB.45.11419
45 D. Chklovskii , B. I. Shklovskii , and L. Glazman , Electrostatics of edge channels, Phys. Rev. B 46 (7), 4026 (1992)
https://doi.org/10.1103/PhysRevB.46.4026
46 M. Fogler , E. Levin , and B. Shklovskii , Chemical potential and magnetization of a Coulomb island, Phys. Rev. B 49 (19), 13767 (1994)
https://doi.org/10.1103/PhysRevB.49.13767
47 Y. V. Nazarov and A. Khaetskii , Wigner molecule on the top of a quantum dot, Phys. Rev. B 49 (7), 5077 (1994)
https://doi.org/10.1103/PhysRevB.49.5077
48 D. Chklovskii , K. Matveev , and B. I. Shklovskii , Ballistic conductance of interacting electrons in the quantum Hall regime, Phys. Rev. B 47 (19), 12605 (1993)
https://doi.org/10.1103/PhysRevB.47.12605
49 D. Xiao , M. C. Chang , and Q. Niu , Berry phase effects on electronic properties, Rev. Mod. Phys. 82 (3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
50 C. Dutreix , H. González-Herrero , I. Brihuega , M. Katsnelson , C. Chapelier , and V. Renard , Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations, Nature 574 (7777), 219 (2019)
https://doi.org/10.1038/s41586-019-1613-5
51 K. S. Novoselov , E. McCann , S. Morozov , V. I. Fal’ko , M. Katsnelson , U. Zeitler , D. Jiang , F. Schedin , and A. Geim , Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene, Nat. Phys. 2 (3), 177 (2006)
https://doi.org/10.1038/nphys245
52 R. Resta , Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66 (3), 899 (1994)
https://doi.org/10.1103/RevModPhys.66.899
53 G. M. Rutter , S. Jung , N. N. Klimov , D. B. Newell , N. B. Zhitenev , and J. A. Stroscio , Microscopic polarization in bilayer graphene, Nat. Phys. 7 (8), 649 (2011)
https://doi.org/10.1038/nphys1988
54 Y. Shimazaki , M. Yamamoto , I. V. Borzenets , K. Watanabe , T. Taniguchi , and S. Tarucha , Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene, Nat. Phys. 11 (12), 1032 (2015)
https://doi.org/10.1038/nphys3551
55 A. Varlet , M. H. Liu , V. Krueckl , D. Bischoff , P. Simonet , K. Watanabe , T. Taniguchi , K. Richter , K. Ensslin , and T. Ihn , Fabry–Pérot interference in gapped bilayer graphene with broken anti-Klein tunneling, Phys. Rev. Lett. 113 (11), 116601 (2014)
https://doi.org/10.1103/PhysRevLett.113.116601
56 Y. Zhang , Y. W. Tan , H. L. Stormer , and P. Kim , Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (7065), 201 (2005)
https://doi.org/10.1038/nature04235
57 K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , M. I. Katsnelson , I. V. Grigorieva , S. V. Dubonos , and A. A. Firsov , Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (7065), 197 (2005)
https://doi.org/10.1038/nature04233
58 D. L. Miller , K. D. Kubista , G. M. Rutter , M. Ruan , W. A. de Heer , P. N. First , and J. A. Stroscio , Observing the quantization of zero mass carriers in graphene, Science 324 (5929), 924 (2009)
https://doi.org/10.1126/science.1171810
59 Z. Q. Fu , Y. Zhang , J. B. Qiao , D. L. Ma , H. Liu , Z. H. Guo , Y. C. Wei , J. Y. Hu , Q. Xiao , X. R. Mao , and L. He , Spatial confinement, magnetic localization, and their interactions on massless Dirac fermions, Phys. Rev. B 98 (24), 241401 (2018)
https://doi.org/10.1103/PhysRevB.98.241401
60 A. Filinov , M. Bonitz , and Y. E. Lozovik , Wigner crystallization in mesoscopic 2D electron systems, Phys. Rev. Lett. 86 (17), 3851 (2001)
https://doi.org/10.1103/PhysRevLett.86.3851
61 C. H. Zhang and Y. N. Joglekar , Wigner crystal and bubble phases in graphene in the quantum Hall regime, Phys. Rev. B 75 (24), 245414 (2007)
https://doi.org/10.1103/PhysRevB.75.245414
62 K. A. Guerrero-Becerra and M. Rontani , Wigner localization in a graphene quantum dot with a mass gap, Phys. Rev. B 90 (12), 125446 (2014)
https://doi.org/10.1103/PhysRevB.90.125446
63 H. González-Herrero , J. M. Gomez-Rodriguez , P. Mallet , M. Moaied , J. J. Palacios , C. Salgado , M. M. Ugeda , J. Y. Veuillen , F. Yndurain , and I. Brihuega , Atomic-scale control of graphene magnetism by using hydrogen atoms, Science 352 (6284), 437 (2016)
https://doi.org/10.1126/science.aad8038
64 Y. Zhang , S. Y. Li , H. Huang , W. T. Li , J. B. Qiao , W. X. Wang , L. J. Yin , K. K. Bai , W. Duan , and L. He , Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene, Phys. Rev. Lett. 117 (16), 166801 (2016)
https://doi.org/10.1103/PhysRevLett.117.166801
65 Y. Cao , V. Fatemi , A. Demir , S. Fang , S. L. Tomarken , J. Y. Luo , J. D. Sanchez-Yamagishi , K. Watanabe , T. Taniguchi , E. Kaxiras , R. C. Ashoori , and P. JarilloHerrero , Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556 (7699), 80 (2018)
https://doi.org/10.1038/nature26154
66 Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , and P. Jarillo-Herrero , Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (7699), 43 (2018)
https://doi.org/10.1038/nature26160
67 Y. W. Liu , J. B. Qiao , C. Yan , Y. Zhang , S. Y. Li , and L. He , Magnetism near half-filling of a van Hove singularity in twisted graphene bilayer, Phys. Rev. B 99, 201408(R) (2019)
https://doi.org/10.1103/PhysRevB.99.201408
68 G. Chen , A. L. Sharpe , P. Gallagher , I. T. Rosen , E. J. Fox , L. Jiang , B. Lyu , H. Li , K. Watanabe , T. Taniguchi , J. Jung , Z. Shi , D. Goldhaber-Gordon , Y. Zhang , and F. Wang , Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature 572 (7768), 215 (2019)
https://doi.org/10.1038/s41586-019-1393-y
69 A. L. Sharpe , E. J. Fox , A. W. Barnard , J. Finney , K. Watanabe , T. Taniguchi , M. A. Kastner , and D. Goldhaber-Gordon , Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene, Science 365 (6453), 605 (2019)
https://doi.org/10.1126/science.aaw3780
70 A. F. Young , C. R. Dean , L. Wang , H. Ren , P. CaddenZimansky , K. Watanabe , T. Taniguchi , J. Hone , K. L. Shepard , and P. Kim , Spin and valley quantum Hall ferromagnetism in graphene, Nat. Phys. 8 (7), 550 (2012)
https://doi.org/10.1038/nphys2307
71 S. Y. Li , Y. Zhang , L. J. Yin , and L. He , Scanning tunneling microscope study of quantum Hall isospin ferromagnetic states in the zero Landau level in a graphene monolayer, Phys. Rev. B 100 (8), 085437 (2019)
https://doi.org/10.1103/PhysRevB.100.085437
72 G. Chen , L. Jiang , S. Wu , B. Lyu , H. Li , B. L. Chittari , K. Watanabe , T. Taniguchi , Z. Shi , J. Jung , Y. Zhang , and F. Wang , Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice, Nat. Phys. 15 (3), 237 (2019)
https://doi.org/10.1038/s41567-018-0387-2
73 L. J. Yin , L. J. Shi , S. Y. Li , Y. Zhang , Z. H. Guo , and L. He , High-magnetic-field tunneling spectra of ABCstacked trilayer graphene on graphite, Phys. Rev. Lett. 122 (14), 146802 (2019)
https://doi.org/10.1103/PhysRevLett.122.146802
74 G. Bester , D. Reuter , L. He , A. Zunger , P. Kailuweit , A. Wieck , U. Zeitler , J. Maan , O. Wibbelhoff , and A. Lorke , Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions in In As∕GaAs quantum dots, Phys. Rev. B 76 (7), 075338 (2007)
https://doi.org/10.1103/PhysRevB.76.075338
75 F. Cavaliere , U. D. Giovannini , M. Sassetti , and B. Kramer , Transport properties of quantum dots in the Wigner molecule regime, New J. Phys. 11 (12), 123004 (2009)
https://doi.org/10.1088/1367-2630/11/12/123004
76 A. Ghosal , A. Güçlü , C. Umrigar , D. Ullmo , and H. U. Baranger , Correlation-induced inhomogeneity in circular quantum dots, Nat. Phys. 2 (5), 336 (2006)
https://doi.org/10.1038/nphys293
77 A. Güçlü , P. Potasz , O. Voznyy , M. Korkusinski , and P. Hawrylak , Magnetism and correlations in fractionally filled degenerate shells of graphene quantum dots, Phys. Rev. Lett. 103 (24), 246805 (2009)
https://doi.org/10.1103/PhysRevLett.103.246805
78 P. Potasz , A. Güçlü , and P. Hawrylak , Spin and electronic correlations in gated graphene quantum rings, Phys. Rev. B 82 (7), 075425 (2010)
https://doi.org/10.1103/PhysRevB.82.075425
79 M. Rontani and E. Molinari , Imaging quasiparticle wave functions in quantum dots via tunneling spectroscopy, Phys. Rev. B 71 (23), 233106 (2005)
https://doi.org/10.1103/PhysRevB.71.233106
80 B. Wunsch , T. Stauber , and F. Guinea , Electron-electron interactions and charging effects in graphene quantum dots, Phys. Rev. B 77 (3), 035316 (2008)
https://doi.org/10.1103/PhysRevB.77.035316
81 A. Güçlü , P. Potasz , and P. Hawrylak , Excitonic absorption in gate-controlled graphene quantum dots, Phys. Rev. B 82 (15), 155445 (2010)
https://doi.org/10.1103/PhysRevB.82.155445
82 Y. Li , H. Shu , S. Wang , and J. Wang , Electronic and optical properties of graphene quantum dots: The role of many-body effects, J. Phys. Chem. C 119 (9), 4983 (2015)
https://doi.org/10.1021/jp506969r
83 A. Franceschetti and A. Zunger , Direct pseudopotential calculation of exciton Coulomb and exchange energies in semiconductor quantum dots, Phys. Rev. Lett. 78 (5), 915 (1997)
https://doi.org/10.1103/PhysRevLett.78.915
84 A. Bostwick , F. Speck , T. Seyller , K. Horn , M. Polini , R. Asgari , A. H. MacDonald , and E. Rotenberg , Observation of plasmarons in quasi-freestanding doped graphene, Science 328 (5981), 999 (2010)
https://doi.org/10.1126/science.1186489
85 D. Elias , R. V. Gorbachev , A. Mayorov , S. Morozov , A. Zhukov , P. Blake , L. Ponomarenko , I. V. Grigorieva , K. S. Novoselov , F. Guinea , and A. K. Geim , Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys. 7 (9), 701 (2011)
https://doi.org/10.1038/nphys2049
86 J. P. Reed , B. Uchoa , Y. I. Joe , Y. Gan , D. Casa , E. Fradkin , and P. Abbamonte , The effective fine-structure constant of freestanding graphene measured in graphite, Science 330 (6005), 805 (2010)
https://doi.org/10.1126/science.1190920
87 D. A. Siegel , C. H. Park , C. Hwang , J. Deslippe , A. V. Fedorov , S. G. Louie , and A. Lanzara , Many-body interactions in quasi-freestanding graphene, Proc. Natl. Acad. Sci. USA 108 (28), 11365 (2011)
https://doi.org/10.1073/pnas.1100242108
88 Y. Wang , V. W. Brar , A. V. Shytov , Q. Wu , W. Regan , H. Z. Tsai , A. Zettl , L. S. Levitov , and M. F. Crommie , Mapping Dirac quasiparticles near a single Coulomb impurity on graphene, Nat. Phys. 8 (9), 653 (2012)
https://doi.org/10.1038/nphys2379
89 R. H. Blick , D. Pfannkuche , R. Haug , K. Klitzing , and K. Eberl , Formation of a coherent mode in a double quantum dot, Phys. Rev. Lett. 80 (18), 4032 (1998)
https://doi.org/10.1103/PhysRevLett.80.4032
90 D. Dixon , L. Kouwenhoven , P. McEuen , Y. Nagamune , J. Motohisa , and H. Sakaki , Influence of energy level alignment on tunneling between coupled quantum dots, Phys. Rev. B 53 (19), 12625 (1996)
https://doi.org/10.1103/PhysRevB.53.12625
91 A. W. Holleitner , R. H. Blick , A. K. Hüttel , K. Eberl , and J. P. Kotthaus , Probing and Controlling the Bonds of an Artificial Molecule, Science 297 (5578), 70 (2002)
https://doi.org/10.1126/science.1071215
92 T. Oosterkamp , T. Fujisawa , W. Van Der Wiel , K. Ishibashi , R. Hijman , S. Tarucha , and L. P. Kouwenhoven , Microwave spectroscopy of a quantum-dot molecule, Nature 395 (6705), 873 (1998)
https://doi.org/10.1038/27617
93 B. Partoens and F. Peeters , Molecule-type phases and Hund’s rule in vertically coupled quantum dots, Phys. Rev. Lett. 84 (19), 4433 (2000)
https://doi.org/10.1103/PhysRevLett.84.4433
94 G. Schedelbeck , W. Wegscheider , M. Bichler , and G. Abstreiter , Coupled quantum dots fabricated by cleaved edge overgrowth: From artificial atoms to molecules, Science 278 (5344), 1792 (1997)
https://doi.org/10.1126/science.278.5344.1792
95 F. Waugh , M. Berry , C. Crouch , C. Livermore , D. Mar , R. Westervelt , K. Campman , and A. Gossard , Measuring interactions between tunnel-coupled quantum dots, Phys. Rev. B 53 (3), 1413 (1996)
https://doi.org/10.1103/PhysRevB.53.1413
96 A. P. Alivisatos , Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (5251), 933 (1996)
https://doi.org/10.1126/science.271.5251.933
97 R. E. Bailey and S. Nie , Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size, J. Am. Chem. Soc. 125 (23), 7100 (2003)
https://doi.org/10.1021/ja035000o
98 L. Banszerus , B. Frohn , A. Epping , D. Neumaier , K. Watanabe , T. Taniguchi , and C. Stampfer , Gate-defined electron–hole double dots in bilayer graphene, Nano Lett. 18 (8), 4785 (2018)
https://doi.org/10.1021/acs.nanolett.8b01303
99 M. Bayer , P. Hawrylak , K. Hinzer , S. Fafard , M. Korkusinski , Z. Wasilewski , O. Stern , and A. Forchel , Coupling and entangling of quantum states in quantum dot molecules, Science 291 (5503), 451 (2001)
https://doi.org/10.1126/science.291.5503.451
100 I. L. Chuang , L. M. Vandersypen , X. Zhou , D. W. Leung , and S. Lloyd , Experimental realization of a quantum algorithm, Nature 393 (6681), 143 (1998)
https://doi.org/10.1038/30181
101 N. Craig , J. Taylor , E. Lester , C. Marcus , M. Hanson , and A. Gossard , Tunable nonlocal spin control in a coupledquantum dot system, Science 304 (5670), 565 (2004)
https://doi.org/10.1126/science.1095452
102 M. Doty , M. Scheibner , I. Ponomarev , E. Stinaff , A. Bracker , V. Korenev , T. Reinecke , and D. Gammon , Electrically tunable g factors in quantum dot molecular spin states, Phys. Rev. Lett. 97 (19), 197202 (2006)
https://doi.org/10.1103/PhysRevLett.97.197202
103 T. Fujisawa , T. H. Oosterkamp , W. G. Van der Wiel , B. W. Broer , R. Aguado , S. Tarucha , and L. P. Kouwenhoven , Spontaneous emission spectrum in double quantum dot devices, Science 282 (5390), 932 (1998)
https://doi.org/10.1126/science.282.5390.932
104 C. R. Kagan and C. B. Murray , Charge transport in strongly coupled quantum dot solids, Nat. Nanotechnol. 10 (12), 1013 (2015)
https://doi.org/10.1038/nnano.2015.247
105 J. Lobo-Checa , M. Matena , K. Müller , J. H. Dil , F. Meier , L. H. Gade , T. A. Jung , and M. Stöhr , Band formation from coupled quantum dots formed by a nanoporous network on a Copper surface, Science 325 (5938), 300 (2009)
https://doi.org/10.1126/science.1175141
106 Y. Pan , J. Yang , S. C. Erwin , K. Kanisawa , and S. Fölsch , Reconfigurable quantum-dot molecules created by atom manipulation, Phys. Rev. Lett. 115 (7), 076803 (2015)
https://doi.org/10.1103/PhysRevLett.115.076803
107 L. Robledo , J. Elzerman , G. Jundt , M. Atatüre , A. Högele , S. Fält , and A. Imamoglu , Conditional dynamics of interacting quantum dots, Science 320 (5877), 772 (2008)
https://doi.org/10.1126/science.1155374
108 M. Scheibner , M. Yakes , A. S. Bracker , I. V. Ponomarev , M. Doty , C. Hellberg , L. Whitman , T. Reinecke , and D. Gammon , Optically mapping the electronic structure of coupled quantum dots, Nat. Phys. 4 (4), 291 (2008)
https://doi.org/10.1038/nphys882
109 E. A. Stinaff , M. Scheibner , A. S. Bracker , I. V. Ponomarev , V. L. Korenev , M. E. Ware , M. F. Doty , T. L. Reinecke , and D. Gammon , Optical signatures of coupled quantum dots, Science 311 (5761), 636 (2006)
https://doi.org/10.1126/science.1121189
110 T. Unold , K. Mueller , C. Lienau , T. Elsaesser , and A. D. Wieck , Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction, Phys. Rev. Lett. 94 (13), 137404 (2005)
https://doi.org/10.1103/PhysRevLett.94.137404
111 W. G. van der Wiel , S. De Franceschi , J. M. Elzerman , T. Fujisawa , S. Tarucha , and L. P. Kouwenhoven , Electron transport through double quantum dots, Rev. Mod. Phys. 75 (1), 1 (2002)
https://doi.org/10.1103/RevModPhys.75.1
112 A. D. Yoffe , Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 50 (1), 1 (2001)
https://doi.org/10.1080/00018730010006608
113 Z. Q. Fu , Y. Pan , J. J. Zhou , K. K. Bai , D. L. Ma , Y. Zhang , J. B. Qiao , H. Jiang , H. Liu , and L. He , Relativistic artificial molecules realized by two coupled graphene quantum dots, Nano Lett. 20 (9), 6738 (2020)
https://doi.org/10.1021/acs.nanolett.0c02623
114 J. B. Qiao , H. Jiang , H. Liu , H. Yang , N. Yang , K. Y. Qiao , and L. He , Bound states in nanoscale graphene quantum dots in a continuous graphene sheet, Phys. Rev. B 95 (8), 081409 (2017)
https://doi.org/10.1103/PhysRevB.95.081409
115 J. Güttinger , C. Stampfer , S. Hellmüller , F. Molitor , T. Ihn , and K. Ensslin , Charge detection in graphene quantum dots, Appl. Phys. Lett. 93 (21), 212102 (2008)
https://doi.org/10.1063/1.3036419
116 X. L. Liu , D. Hug , and L. M. Vandersypen , Gate-defined graphene double quantum dot and excited state spectroscopy, Nano Lett. 10 (5), 1623 (2010)
https://doi.org/10.1021/nl9040912
117 F. Molitor , S. Dröscher , J. Güttinger , A. Jacobsen , C. Stampfer , T. Ihn , and K. Ensslin , Transport through graphene double dots, Appl. Phys. Lett. 94 (22), 222107 (2009)
https://doi.org/10.1063/1.3148367
118 P. Silvestrov and K. Efetov , Quantum dots in graphene, Phys. Rev. Lett. 98 (1), 016802 (2007)
https://doi.org/10.1103/PhysRevLett.98.016802
119 C. Stampfer , J. Güttinger , F. Molitor , D. Graf , T. Ihn , and K. Ensslin , Tunable Coulomb blockade in nanostructured graphene, Appl. Phys. Lett. 92 (1), 012102 (2008)
https://doi.org/10.1063/1.2827188
120 A. C. Bleszynski , F. A. Zwanenburg , R. Westervelt , A. L. Roest , E. P. Bakkers , and L. P. Kouwenhoven , Scanned probe imaging of quantum dots inside InAs nanowires, Nano Lett. 7 (9), 2559 (2007)
https://doi.org/10.1021/nl0621037
121 A. Deshpande , W. Bao , Z. Zhao , C. Lau , and B. J. LeRoy , Imaging charge density fluctuations in graphene using Coulomb blockade spectroscopy, Phys. Rev. B 83 (15), 155409 (2011)
https://doi.org/10.1103/PhysRevB.83.155409
122 P. Fallahi , A. C. Bleszynski , R. M. Westervelt , J. Huang , J. D. Walls , E. J. Heller , M. Hanson , and A. C. Gossard , Imaging a single-electron quantum dot, Nano Lett. 5 (2), 223 (2005)
https://doi.org/10.1021/nl048405v
123 K. A. Ritter and J. W. Lyding , The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3), 235 (2009)
https://doi.org/10.1038/nmat2378
124 X. Wang , Y. Ouyang , L. Jiao , H. Wang , L. Xie , J. Wu , J. Guo , and H. Dai , Graphene nanoribbons with smooth edges behave as quantum wires, Nat. Nanotechnol. 6 (9), 563 (2011)
https://doi.org/10.1038/nnano.2011.138
125 M. T. Woodside and P. L. McEuen , Scanned probe imaging of single-electron charge states in nanotube quantum dots, Science 296 (5570), 1098 (2002)
https://doi.org/10.1126/science.1069923
126 D. Walkup , F. Ghahari , C. Gutiérrez , K. Watanabe , T. Taniguchi , N. B. Zhitenev , and J. A. Stroscio , Tuning single-electron charging and interactions between compressible Landau level islands in graphene, Phys. Rev. B 101 (3), 035428 (2020)
https://doi.org/10.1103/PhysRevB.101.035428
127 M. Amman , R. Wilkins , E. Ben-Jacob , P. Maker , and R. Jaklevic , Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled in series, Phys. Rev. B 43 (1), 1146 (1991)
https://doi.org/10.1103/PhysRevB.43.1146
128 A. Hanna , and M. Tinkham , Variation of the Coulomb staircase in a two-junction system by fractional electron charge, Phys. Rev. B 44 (11), 5919 (1991)
https://doi.org/10.1103/PhysRevB.44.5919
129 V. W. Brar , R. Decker , H. M. Solowan , Y. Wang , L. Maserati , K. T. Chan , H. Lee , Ç. O. Girit , A. Zettl , S. G. Louie , M. L. Cohen , and M. F. Crommie , Gate-controlled ionization and screening of cobalt adatoms on a graphene surface, Nat. Phys. 7 (1), 43 (2011)
https://doi.org/10.1038/nphys1807
130 D. Wong , L. Jr Velasco , J. Ju , S. Lee , H. Z. Kahn , C. Tsai , T. Germany , K. Taniguchi , A. Watanabe , F. Zettl , Wang , and M. F. Crommie , Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy, Nat. Nanotechnol. 10 (11), 949 (2015)
https://doi.org/10.1038/nnano.2015.188
131 Y. J. Song , A. F. Otte , Y. Kuk , Y. Hu , D. B. Torrance , P. N. First , W. A. de Heer , H. Min , S. Adam , M. D. Stiles , A. H. MacDonald , and J. A. Stroscio , High-resolution tunnelling spectroscopy of a graphene quartet, Nature 467 (7312), 185 (2010)
https://doi.org/10.1038/nature09330
132 L. J. Yin , S. Y. Li , J. B. Qiao , J. C. Nie , and L. He , Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer on graphite surface, Phys. Rev. B 91 (11), 115405 (2015)
https://doi.org/10.1103/PhysRevB.91.115405
133 S. Y. Li , H. Liu , J. B. Qiao , H. Jiang , and L. He , Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene n–p–n junction resonators, Phys. Rev. B 97 (11), 115442 (2018)
https://doi.org/10.1103/PhysRevB.97.115442
134 S. Y. Li , K. K. Bai , W. J. Zuo , Y. W. Liu , Z. Q. Fu , W. X. Wang , Y. Zhang , L. J. Yin , J. B. Qiao , and L. He , Tunneling spectra of a quasifreestanding graphene monolayer, Phys. Rev. Appl. 9 (5), 054031 (2018)
https://doi.org/10.1103/PhysRevApplied.9.054031
135 T. Low and F. Guinea , Strain-induced pseudomagnetic field for novel graphene electronics, Nano Lett. 10 (9), 3551 (2010)
https://doi.org/10.1021/nl1018063
136 D. Abanin and D. Pesin , Interaction-induced topological insulator states in strained graphene, Phys. Rev. Lett. 109 (6), 066802 (2012)
https://doi.org/10.1103/PhysRevLett.109.066802
137 B. Uchoa and Y. Barlas , Superconducting states in pseudo-Landau-levels of strained graphene, Phys. Rev. Lett. 111 (4), 046604 (2013)
https://doi.org/10.1103/PhysRevLett.111.046604
138 B. Roy , Z. X. Hu , and K. Yang , Theory of unconventional quantum Hall effect in strained graphene, Phys. Rev. B 87 (12), 121408 (2013)
https://doi.org/10.1103/PhysRevB.87.121408
139 D. B. Zhang , G. Seifert , and K. Chang , Strain-induced pseudomagnetic fields in twisted graphene nanoribbons, Phys. Rev. Lett. 112 (9), 096805 (2014)
https://doi.org/10.1103/PhysRevLett.112.096805
140 G. Wakker , R. P. Tiwari , and M. Blaauboer , Localization and circulating currents in curved graphene devices, Phys. Rev. B 84 (19), 195427 (2011)
https://doi.org/10.1103/PhysRevB.84.195427
141 B. Amorim , A. Cortijo , F. De Juan , A. Grushin , F. Guinea , A. Gutiérrez-Rubio , H. Ochoa , V. Parente , R. Roldán , P. San-Jose , J. Schiefele , M. Sturla , and M. A. H. Vozmediano , Novel effects of strains in graphene and other two dimensional materials, Phys. Rep. 617, 1 (2016)
https://doi.org/10.1016/j.physrep.2015.12.006
142 M. Settnes , S. R. Power , and A. P. Jauho , Pseudomagnetic fields and triaxial strain in graphene, Phys. Rev. B 93 (3), 035456 (2016)
https://doi.org/10.1103/PhysRevB.93.035456
143 S. Y. Li , Y. Su , Y. N. Ren , and L. He , Valley polarization and inversion in strained graphene via pseudoLandau levels, valley splitting of real Landau levels, and confined states, Phys. Rev. Lett. 124, 106802 (2020)
https://doi.org/10.1103/PhysRevLett.124.106802
144 E. McCann , Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B 74 (16), 161403 (2006)
https://doi.org/10.1103/PhysRevB.74.161403
145 Y. Zhang , T. T. Tang , C. Girit , Z. Hao , M. C. Martin , A. Zettl , M. F. Crommie , Y. R. Shen , and F. Wang , Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459 (7248), 820 (2009)
https://doi.org/10.1038/nature08105
146 J. B. Oostinga , H. B. Heersche , X. Liu , A. F. Morpurgo , and L. M. Vandersypen , Gate-induced insulating state in bilayer graphene devices, Nat. Mater. 7 (2), 151 (2008)
https://doi.org/10.1038/nmat2082
147 L. J. Yin , H. Jiang , J. B. Qiao , and L. He , Direct imaging of topological edge states at a bilayer graphene domain wall, Nat. Commun. 7 (1), 11760 (2016)
https://doi.org/10.1038/ncomms11760
148 L. Ju , Z. Shi , N. Nair , Y. Lv , C. Jin , C. Jr Velasco , H. A. Ojeda-Aristizabal , M. C. Bechtel , A. Martin , J. Zettl , Analytis , and F. Wang , Topological valley transport at bilayer graphene domain walls, Nature 520 (7549), 650 (2015)
https://doi.org/10.1038/nature14364
149 L. J. Yin , Y. Zhang , J. B. Qiao , S. Y. Li , and L. He , Experimental observation of surface states and Landau levels bending in bilayer graphene, Phys. Rev. B 93 (12), 125422 (2016)
https://doi.org/10.1103/PhysRevB.93.125422
150 Y. T. Zhang , X. Xie , and Q. Sun , Effect of Zeeman splitting and interlayer bias potential on electron transport in bilayer graphene, Phys. Rev. B 86 (3), 035447 (2012)
https://doi.org/10.1103/PhysRevB.86.035447
151 J. Li , K. Wang , K. J. McFaul , Z. Zern , Y. Ren , K. Watanabe , T. Taniguchi , Z. Qiao , and J. Zhu , Gate-controlled topological conducting channels in bilayer graphene, Nat. Nanotechnol. 11 (12), 1060 (2016)
https://doi.org/10.1038/nnano.2016.158
152 M. T. Allen , J. Martin , and A. Yacoby , Gate-defined quantum confinement in suspended bilayer graphene, Nat. Commun. 3 (1), 934 (2012)
https://doi.org/10.1038/ncomms1945
153 A. M. Goossens , S. C. Driessen , T. A. Baart , K. Watanabe , T. Taniguchi , and L. M. Vandersypen , Gate-defined confinement in bilayer graphene–hexagonal boron nitride hybrid devices, Nano Lett. 12 (9), 4656 (2012)
https://doi.org/10.1021/nl301986q
154 J. Jr Velasco , D. Lee , S. Wong , H. Z. Kahn , J. Tsai , T. Costello , T. Umeda , K. Taniguchi , Watanabe , A. Zettl , F. Wang , and M. F. Crommie , Visualization and control of single-electron charging in bilayer graphene quantum dots, Nano Lett. 18 (8), 5104 (2018)
https://doi.org/10.1021/acs.nanolett.8b01972
155 Y. Lee , A. Knothe , H. Overweg , M. Eich , C. Gold , A. Kurzmann , V. Klasovika , T. Taniguchi , K. Wantanabe , V. Fal’ko , T. Ihn , K. Ensslin , and P. Rickhaus , Tunable valley splitting due to topological orbital magnetic moment in bilayer graphene quantum point contacts, Phys. Rev. Lett. 124 (12), 126802 (2020)
https://doi.org/10.1103/PhysRevLett.124.126802
156 M. Eich , F. Herman , R. Pisoni , H. Overweg , A. Kurzmann , Y. Lee , P. Rickhaus , K. Watanabe , T. Taniguchi , M. Sigrist , T. Ihn , and K. Ensslin , Spin and valley states in gate-defined bilayer graphene quantum dots, Phys. Rev. X 8 (3), 031023 (2018)
https://doi.org/10.1103/PhysRevX.8.031023
157 A. Kurzmann , M. Eich , H. Overweg , M. Mangold , F. Herman , P. Rickhaus , R. Pisoni , Y. Lee , R. Garreis , C. Tong , K. Watanabe , T. Taniguchi , K. Ensslin , and T. Ihn , Excited states in bilayer graphene quantum dots, Phys. Rev. Lett. 123 (2), 026803 (2019)
https://doi.org/10.1103/PhysRevLett.123.026803
158 N. Gu , M. Rudner , and L. Levitov , Chirality-assisted electronic cloaking of confined states in bilayer graphene, Phys. Rev. Lett. 107 (15), 156603 (2011)
https://doi.org/10.1103/PhysRevLett.107.156603
159 Z. Ge , F. Joucken , E. Quezada , D. R. Da Costa , J. Davenport , B. Giraldo , T. Taniguchi , K. Watanabe , N. P. Kobayashi , T. Low , and J. Jr Velasco , Visualization and manipulation of bilayer graphene quantum dots with broken rotational symmetry and nontrivial topology, Nano Lett. 20 (12), 8682 (2020)
https://doi.org/10.1021/acs.nanolett.0c03453
160 C. H. Park and N. Marzari , Berry phase and pseudospin winding number in bilayer graphene, Phys. Rev. B 84 (20), 205440 (2011)
https://doi.org/10.1103/PhysRevB.84.205440
161 K. F. Mak , C. H. Lui , J. Shan , and T. F. Heinz , Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102 (25), 256405 (2009)
https://doi.org/10.1103/PhysRevLett.102.256405
162 T. Ohta , A. Bostwick , T. Seyller , K. Horn , and E. Rotenberg , Controlling the electronic structure of bilayer graphene, Science 313 (5789), 951 (2006)
https://doi.org/10.1126/science.1130681
163 Z. Hou , Y. F. Zhou , X. Xie , and Q. F. Sun , Berry phase induced valley level crossing in bilayer graphene quantum dots, Phys. Rev. B 99 (12), 125422 (2019)
https://doi.org/10.1103/PhysRevB.99.125422
164 R. Du , M. H. Liu , J. Mohrmann , F. Wu , R. Krupke , H. Von Löhneysen , K. Richter , and R. Danneau , Tuning anti-Klein to Klein tunneling in bilayer graphene, Phys. Rev. Lett. 121 (12), 127706 (2018)
https://doi.org/10.1103/PhysRevLett.121.127706
165 W. Yao , D. Xiao , and Q. Niu , Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77 (23), 235406 (2008)
https://doi.org/10.1103/PhysRevB.77.235406
166 R. Gorbachev , J. Song , G. Yu , A. Kretinin , F. Withers , Y. Cao , A. Mishchenko , I. Grigorieva , K. S. Novoselov , L. Levitov , and A. K. Geim , Detecting topological currents in graphene superlattices, Science 346 (6208), 448 (2014)
https://doi.org/10.1126/science.1254966
167 K. F. Mak , K. L. McGill , J. Park , and P. L. McEuen , The valley Hall effect in MoS2 transistors, Science 344 (6191), 1489 (2014)
https://doi.org/10.1126/science.1250140
168 S. Y. Xu , Q. Ma , H. Shen , V. Fatemi , S. Wu , T. R. Chang , G. Chang , A. M. M. Valdivia , C. K. Chan , Q. D. Gibson , J. Zhou , Z. Liu , K. Watanabe , T. Taniguchi , H. Lin , R. J. Cava , L. Fu , N. Gedik , and P. Jarillo-Herrero , Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2, Nat. Phys. 14 (9), 900 (2018)
https://doi.org/10.1038/s41567-018-0189-6
169 H. Weng , C. Fang , Z. Fang , B. A. Bernevig , and X. Dai , Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides, Phys. Rev. X 5 (1), 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
170 S. Y. Xu , I. Belopolski , N. Alidoust , M. Neupane , G. Bian , C. Zhang , R. Sankar , G. Chang , Z. Yuan , C. C. Lee , S. M. Huang , H. Zheng , J. Ma , D. S. Sanchez , B. K. Wang , A. Bansil , F. Chou , P. P. Shibayev , H. Lin , S. Jia , and M. Z. Hasan , Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349 (6248), 613 (2015)
https://doi.org/10.1126/science.aaa9297
171 B. Lv , H. Weng , B. Fu , X. P. Wang , H. Miao , J. Ma , P. Richard , X. Huang , L. Zhao , G. Chen , Z. Fang , X. Dai , T. Qian , and H. Ding , Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5 (3), 031013 (2015)
https://doi.org/10.1103/PhysRevX.5.031013
172 M. Eich , R. Pisoni , A. Pally , H. Overweg , A. Kurzmann , Y. Lee , P. Rickhaus , K. Watanabe , T. Taniguchi , K. Ensslin , and T. Ihn , Coupled quantum dots in bilayer graphene, Nano Lett. 18 (8), 5042 (2018)
https://doi.org/10.1021/acs.nanolett.8b01859
173 L. Banszerus , S. Möller , E. Icking , K. Watanabe , T. Taniguchi , C. Volk , and C. Stampfer , Single-electron double quantum dots in bilayer graphene, Nano Lett. 20 (3), 2005 (2020)
https://doi.org/10.1021/acs.nanolett.9b05295
174 E. Clar and D. Stewart , Aromatic hydrocarbons. LXV. Triangulene derivatives, J. Am. Chem. Soc. 75 (11), 2667 (1953)
https://doi.org/10.1021/ja01107a035
175 M. Melle-Franco , When 1 + 1 is odd, Nat. Nanotechnol. 12 (4), 292 (2017)
https://doi.org/10.1038/nnano.2017.9
176 Y. Morita , S. Suzuki , K. Sato , and T. Takui , Synthetic organic spin chemistry for structurally well-defined openshell graphene fragments, Nat. Chem. 3 (3), 197 (2011)
https://doi.org/10.1038/nchem.985
177 E. H. Lieb , Two theorems on the Hubbard model, Phys. Rev. Lett. 62 (10), 1201 (1989)
https://doi.org/10.1103/PhysRevLett.62.1201
178 P. Potasz , A. Güçlü , and P. Hawrylak , Zero-energy states in triangular and trapezoidal graphene structures, Phys. Rev. B 81 (3), 033403 (2010)
https://doi.org/10.1103/PhysRevB.81.033403
179 J. Fernández-Rossier and J. J. Palacios , Magnetism in graphene nanoislands, Phys. Rev. Lett. 99 (17), 177204 (2007)
https://doi.org/10.1103/PhysRevLett.99.177204
180 W. L. Wang , S. Meng , and E. Kaxiras , Graphene nanoflakes with large spin, Nano Lett. 8 (1), 241 (2008)
https://doi.org/10.1021/nl072548a
181 A. Heinrich , J. Gupta , C. Lutz , and D. Eigler , Singleatom spin-flip spectroscopy, Science 306 (5695), 466 (2004)
https://doi.org/10.1126/science.1101077
182 C. F. Hirjibehedin , C. P. Lutz , and A. J. Heinrich , Spin coupling in engineered atomic structures, Science 312 (5776), 1021 (2006)
https://doi.org/10.1126/science.1125398
183 S. Baumann , W. Paul , T. Choi , C. P. Lutz , A. Ardavan , and A. J. Heinrich , Electron paramagnetic resonance of individual atoms on a surface, Science 350 (6259), 417 (2015)
https://doi.org/10.1126/science.aac8703
184 W. L. Wang , O. V. Yazyev , S. Meng , and E. Kaxiras , Topological frustration in graphene nanoflakes: Magnetic order and spin logic devices, Phys. Rev. Lett. 102 (15), 157201 (2009)
https://doi.org/10.1103/PhysRevLett.102.157201
185 W. Han , R. K. Kawakami , M. Gmitra , and J. Fabian , Graphene spintronics, Nat. Nanotechnol. 9 (10), 794 (2014)
https://doi.org/10.1038/nnano.2014.214
186 N. Pavliček , A. Mistry , Z. Majzik , N. Moll , G. Meyer , D. J. Fox , and L. Gross , Synthesis and characterization of triangulene, Nat. Nanotechnol. 12 (4), 308 (2017)
https://doi.org/10.1038/nnano.2016.305
187 G. Allinson , R. J. Bushby , J. L. Paillaud , D. Oduwole , and K. Sales , ESR spectrum of a stable triplet π biradical: Trioxytriangulene, J. Am. Chem. Soc. 115 (5), 2062 (1993)
https://doi.org/10.1021/ja00058a076
188 J. Inoue , K. Fukui , T. Kubo , S. Nakazawa , K. Sato , D. Shiomi , Y. Morita , K. Yamamoto , T. Takui , and K. Nakasuji , The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: A ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon, J. Am. Chem. Soc. 123 (50), 12702 (2001)
https://doi.org/10.1021/ja016751y
189 G. Allinson , R. J. Bushby , M. V. Jesudason , J.-L. Paillaud , and N. Taylor , The synthesis of singlet ground state derivatives of non-Kekulé polynuclear aromatics, J. Chem. Soc. Perkin Trans, 2, 147 (1997)
https://doi.org/10.1039/A606932K
190 N. Pavliček , I. Swart , J. Niedenführ , G. Meyer , and J. Repp , Symmetry dependence of vibration-assisted tunneling, Phys. Rev. Lett. 110 (13), 136101 (2013)
https://doi.org/10.1103/PhysRevLett.110.136101
191 J. Repp , G. Meyer , S. Paavilainen , F. E. Olsson , and M. Persson , Imaging bond formation between a gold atom and pentacene on an insulating surface, Science 312 (5777), 1196 (2006)
https://doi.org/10.1126/science.1126073
192 P. Jia , W. Chen , J. Qiao , M. Zhang , X. Zheng , Z. Xue , R. Liang , C. Tian , L. He , Z. Di , and X. Wang , Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields, Nat. Commun. 10 (1), 3127 (2019)
https://doi.org/10.1038/s41467-019-11038-7
193 Y. W. Liu , Y. Su , X. F. Zhou , L. J. Yin , C. Yan , S. Y. Li , W. Yan , S. Han , Z. Q. Fu , Y. Zhang , Q. Yang , Y. N. Ren , and L. He , Tunable lattice reconstruction, triangular network of chiral one-dimensional states, and bandwidth of flat bands in magic angle twisted bilayer graphene, Phys. Rev. Lett. 125 (23), 236102 (2020)
https://doi.org/10.1103/PhysRevLett.125.236102
194 S. Y. Li , Y. Zhang , Y. N. Ren , J. Liu , X. Dai , and L. He , Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene, Phys. Rev. B 102 (12), 121406 (2020)
https://doi.org/10.1103/PhysRevB.102.121406
195 J. Cai , P. Ruffeux , R. Jaafar , M. Bieri , T. Braun , S. Blankenburg , M. Muoth , A. P. Seitsonen , M. Saleh , X. Feng , K. Müllen , and R. Fasel , Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466 (7305), 470 (2010)
https://doi.org/10.1038/nature09211
196 P. Ruffeux , S. Wang , B. Yang , C. Sánchez-Sánchez , J. Liu , T. Dienel , L. Talirz , P. Shinde , C. A. Pignedoli , D. Passerone , T. Dumslaff , X. Feng , K. Müllen , and R. Fasel , On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531 (7595), 489 (2016)
https://doi.org/10.1038/nature17151
197 M. Di Giovannantonio , O. Deniz , J. I. Urgel , R. Widmer , T. Dienel , S. Stolz , C. Sánchez-Sánchez , M. Muntwiler , T. Dumslaff , R. Berger , A. Narita , X. Feng , K. Müllen , P. Ruffeux , and R. Fasel , On-surface growth dynamics of graphene nanoribbons: The role of halogen functionalization, ACS Nano 12 (1), 74 (2018)
https://doi.org/10.1021/acsnano.7b07077
198 Y. C. Chen , T. Cao , C. Chen , Z. Pedramrazi , D. Haberer , D. G. De Oteyza , F. R. Fischer , S. G. Louie , and M. F. Crommie , Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 10 (2), 156 (2015)
https://doi.org/10.1038/nnano.2014.307
199 M. Treier , C. A. Pignedoli , T. Laino , R. Rieger , K. Müllen , D. Passerone , and R. Fasel , Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes, Nat. Chem. 3 (1), 61 (2011)
https://doi.org/10.1038/nchem.891
200 J. Cai , C. A. Pignedoli , L. Talirz , P. Ruffeux , H. Söde , L. Liang , V. Meunier , R. Berger , R. Li , X. Feng , K. Müllen , and R. Fasel , Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9 (11), 896 (2014)
https://doi.org/10.1038/nnano.2014.184
201 O. Gröning , S. Wang , X. Yao , C. A. Pignedoli , G. Borin Barin , C. Daniels , A. Cupo , V. Meunier , X. Feng , A. Narita , K. Müllen , P. Ruffeux , and R. Fasel , Engineering of robust topological quantum phases in graphene nanoribbons, Nature 560 (7717), 209 (2018)
https://doi.org/10.1038/s41586-018-0375-9
202 S. Wang , N. Kharche , E. Costa Girão , X. Feng , K. Müllen , V. Meunier , R. Fasel , and P. Ruffeux , Quantum dots in graphene nanoribbons, Nano Lett. 17 (7), 4277 (2017)
https://doi.org/10.1021/acs.nanolett.7b01244
203 F. J. Giessibl , Advances in atomic force microscopy, Rev. Mod. Phys. 75 (3), 949 (2003)
https://doi.org/10.1021/acs.nanolett.7b01244
204 F. Mohn , B. Schuler , L. Gross , and G. Meyer , Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules, Appl. Phys. Lett. 102 (7), 073109 (2013)
https://doi.org/10.1063/1.4793200
205 L. Gross , F. Mohn , N. Moll , P. Liljeroth , and G. Meyer , The chemical structure of a molecule resolved by atomic force microscopy, Science 325 (5944), 1110 (2009)
https://doi.org/10.1126/science.1176210
206 F. J. Giessibl , High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett. 73 (26), 3956 (1998)
https://doi.org/10.1063/1.122948
207 D. J. Choi , N. Lorente , J. Wiebe , K. Von Bergmann , A. F. Otte , and A. J. Heinrich , Atomic spin chains on surfaces, Rev. Mod. Phys. 91 (4), 041001 (2019)
https://doi.org/10.1103/RevModPhys.91.041001
208 G. Trinquier , N. Suaud , N. Guihéry , and J. P. Malrieu , Designing magnetic organic lattices from high-spin polycyclic units, ChemPhysChem 12 (16), 3020 (2011)
https://doi.org/10.1002/cphc.201100311
209 X. Li , J. Zhou , Q. Wang , X. Chen , Y. Kawazoe , and P. Jena , Magnetism of two-dimensional triangular nanoflake-based kagome lattices, New J. Phys. 14 (3), 033043 (2012)
https://doi.org/10.1088/1367-2630/14/3/033043
210 X. Li and Q. Wang , Tunable ferromagnetism in assembled two dimensional triangular graphene nanoflakes, Phys. Chem. Chem. Phys. 14 (6), 2065 (2012)
https://doi.org/10.1039/c2cp22997h
211 S. Khanna and J. Lambe , Inelastic electron tunneling spectroscopy, Science 220 (4604), 1345 (1983)
https://doi.org/10.1126/science.220.4604.1345
212 Y. Zhang , V. W. Brar , F. Wang , C. Girit , Y. Yayon , M. Panlasigui , A. Zettl , and M. F. Crommie , Giant phononinduced conductance in scanning tunnelling spectroscopy of gate-tunable graphene, Nat. Phys. 4 (8), 627 (2008)
https://doi.org/10.1038/nphys1022
213 M. Ternes , Spin excitations and correlations in scanning tunneling spectroscopy, New J. Phys. 17 (6), 063016 (2015)
https://doi.org/10.1088/1367-2630/17/6/063016
214 S. Mishra , D. Beyer , K. Eimre , S. Kezilebieke , R. Berger , O. Gröning , C. A. Pignedoli , K. Müllen , P. Liljeroth , P. Ruffeux , X. Feng , and R. Fasel , Topological frustration induces unconventional magnetism in a nanographene, Nat. Nanotechnol. 15 (1), 22 (2020)
https://doi.org/10.1038/s41565-019-0577-9
215 J. Su , W. Fan , P. Mutombo , X. Peng , S. Song , M. Ondráček , P. Golub , J. Brabec , L. Veis , M. Telychko , P. Jelínek , J. Wu , and J. Lu , On-surface synthesis and characterization of [7]triangulene quantum ring, Nano Lett. 21 (1), 861 (2021)
https://doi.org/10.1021/acs.nanolett.0c04627
216 J. Li , S. Sanz , M. Corso , D. J. Choi , D. Peña , T. Frederiksen , and J. I. Pascual , Single spin localization and manipulation in graphene open-shell nanostructures, Nat. Commun. 10, 200 (2019)
https://doi.org/10.1038/s41467-018-08060-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed