Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 32503   https://doi.org/10.1007/s11467-021-1127-0
  本期目录
Kink-like breathers in Bose–Einstein condensates with helicoidal spin–orbit coupling
Yixin Yang1,2, Peng Gao1,2, Li-Chen Zhao1,2,3, Zhan-Ying Yang1,2,3()
1. School of Physics, Northwest University, Xi'an 710127, China
2. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
3. Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
 全文: PDF(846 KB)  
Abstract

We report a kind of kink-like breathers in one-dimensional Bose–Einstein condensates (BECs) with helicoidal spin–orbit coupling (SOC), on whose two sides the background densities manifest obvious difference (called kink amplitude). The kink amplitude and shape of breather can be adjusted by the strength and period of helicoidal SOC, and its atomic number in two components exchanges periodically with time. The SOC has similar influence on the kink amplitude and the exchanged atomic number, especially when the background wave number is fixed. It indicates that the oscillating intensity of breather can be controlled by adjusting initial kink amplitude. Our work showcases the great potential of realizing novel types of breathers through SOC, and deepens our understanding on the formation mechanisms of breathers in BECs.

Key wordsBose–Einstein condensates    spin–orbit coupling    breather
收稿日期: 2021-07-17      出版日期: 2021-11-23
Corresponding Author(s): Zhan-Ying Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 32503.
Yixin Yang, Peng Gao, Li-Chen Zhao, Zhan-Ying Yang. Kink-like breathers in Bose–Einstein condensates with helicoidal spin–orbit coupling. Front. Phys. , 2022, 17(3): 32503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1127-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/32503
1 M. Matuszewski , E. Infeld , B. A. Malomed , and M. Trippenbach , Fully three dimensional breather solitons can be created using Feshbach resonances, Phys. Rev. Lett. 95 (5), 050403 (2005)
https://doi.org/10.1103/PhysRevLett.95.050403
2 M. Yu , J. K. Jang , Y. Okawachi , A. G. Griffth , K. Luke , S. A. Miller , X. Ji , M. Lipson , and A. L. Gaeta , Breather soliton dynamics in microresonators, Nat. Commun. 8 (1), 14569 (2017)
https://doi.org/10.1038/ncomms14569
3 D. Luo , Y. Jin , J. H. V. Nguyen , B. A. Malomed , O. V. Marchukov , V. A. Yurovsky , V. Dunjko , M. Olshanii , and R. G. Hulet , Creation and characterization of matter-wave breathers, Phys. Rev. Lett. 125 (18), 183902 (2020)
https://doi.org/10.1103/PhysRevLett.125.183902
4 E. A. Kuznetsov , Solitons in parametrically unstable plasma, Dokl. Akad. Nauk SSSR 236, 575 (1977)
5 Y. C. Ma , The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math. 60 (1), 43 (1979)
https://doi.org/10.1002/sapm197960143
6 N. N. Akhmediev and V. I. Korneev , Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theor. Math. Phys. 69 (2), 1089 (1986)
https://doi.org/10.1007/BF01037866
7 M. Tajiri and Y. Watanabe , Breather solutions to the focusing nonlinear Schrödinger equation, Phys. Rev. E 57 (3), 3510 (1998)
https://doi.org/10.1103/PhysRevE.57.3510
8 C. Liu and N. Akhmediev , Super-regular breathers in nonlinear systems with self-steepening effect, Phys. Rev. E 100 (6), 062201 (2019)
https://doi.org/10.1103/PhysRevE.100.062201
9 C. Liu , Z. Y. Yang , and W. L. Yang , Growth rate of modulation instability driven by superregular breathers, Chaos 28 (8), 083110 (2018)
https://doi.org/10.1063/1.5025632
10 Y. H. Wu , C. Liu , Z. Y. Yang , and W. L. Yang , Breather interaction properties induced by self-steepening and space–time correction, Chin. Phys. Lett. 37 (4), 040501 (2020)
https://doi.org/10.1088/0256-307X/37/4/040501
11 N. Akhmediev , J. M. Soto-Crespo , and A. Ankiewicz , How to excite a rogue wave, Phys. Rev. A 80 (4), 043818 (2009)
https://doi.org/10.1103/PhysRevA.80.043818
12 B. Frisquet , B. Kibler , and G. Millot , Collision of Akhmediev breathers in nonlinear fiber optics, Phys. Rev. X 3 (4), 041032 (2013)
https://doi.org/10.1103/PhysRevX.3.041032
13 F. Baronio , A. Degasperis , M. Conforti , and S. Wabnitz , Solutions of the vector nonlinear schrödinger equations: Evidence for deterministic rogue waves, Phys. Rev. Lett. 109 (4), 044102 (2012)
https://doi.org/10.1103/PhysRevLett.109.044102
14 B. Kibler , J. Fatome , C. Finot , G. Millot , F. Dias , G. Genty , N. Akhmediev , and J. M. Dudley , The Peregrine soliton in nonlinear fibre optics, Nat. Phys. 6 (10), 790 (2010)
https://doi.org/10.1038/nphys1740
15 H. Bailung , S. K. Sharma , and Y. Nakamura , Observation of peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett. 107 (25), 255005 (2011)
https://doi.org/10.1103/PhysRevLett.107.255005
16 A. Chabchoub , N. P. Hoffmann , and N. Akhmediev , Rogue wave observation in a water wave tank, Phys. Rev. Lett. 106 (20), 204502 (2011)
https://doi.org/10.1103/PhysRevLett.106.204502
17 C. Liu , Z. Y. Yang , L. C. Zhao , and W. L. Yang , Vector breathers and the inelastic interaction in a three-mode nonlinear optical fiber, Phys. Rev. A 89 (5), 055803 (2014)
https://doi.org/10.1103/PhysRevA.89.055803
18 C. Liu , Z. Y. Yang , W. L. Yang , and N. Akhmediev , Chessboard-like spatio-temporal interference patterns and their excitation, J. Opt. Soc. Am. B 36 (5), 1294 (2019)
https://doi.org/10.1364/JOSAB.36.001294
19 M. H. Anderson , J. R. Ensher , M. R. Matthews , C. E. Wieman , and E. A. Cornell , Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269 (5221), 198 (1995)
https://doi.org/10.1126/science.269.5221.198
20 Y. Zhang , M. E. Mossman , T. Busch , P. Engels , and C. Zhang , Properties of spin–orbit-coupled Bose–Einstein condensates, Front. Phys. 11 (3), 118103 (2016)
https://doi.org/10.1007/s11467-016-0560-y
21 Y. J. Lin , K. Jiménez-García , and I. B. Spielman , Spin– orbit-coupled Bose–Einstein condensates, Nature 471, 83 (2011)
https://doi.org/10.1038/nature09887
22 J. Dalibard , F. Gerbier , G. Juzeliūnas , and P. Öhberg , Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83 (4), 1523 (2011)
https://doi.org/10.1103/RevModPhys.83.1523
23 Y. Xu , Y. Zhang , and B. Wu , Bright solitons in spin–orbitcoupled Bose–Einstein condensates, Phys. Rev. A 87 (1), 013614 (2013)
https://doi.org/10.1103/PhysRevA.87.013614
24 V. Achilleos , D. J. Frantzeskakis , P. G. Kevrekidis , and D. E. Pelinovsky , Matter-wave bright solitons in spin– orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110 (26), 264101 (2013)
https://doi.org/10.1103/PhysRevLett.110.264101
25 V. Achilleos , J. Stockhofe , P. G. Kevrekidis , D. J. Frantzeskakis , and P. Schmelcher , Matter-wave dark solitons and their excitation spectra in spin–orbit coupled Bose–Einstein condensates, EPL 103 (2), 20002 (2013)
https://doi.org/10.1209/0295-5075/103/20002
26 V. Achilleos , D. J. Frantzeskakis , P. G. Kevrekidis , P. Schmelcher , and J. Stockhofe , Positive and negative mass solitons in spin–orbit coupled Bose–Einstein condensates, arXiv: 1502.05574 (2015)
27 L. C. Zhao , X. W. Luo , and C. Zhang , Magnetic stripe soliton and localized stripe wave in spin-1 Bose–Einstein condensates, Phys. Rev. A 101 (2), 023621 (2020)
https://doi.org/10.1103/PhysRevA.101.023621
28 Y. V. Kartashov and V. V. Konotop , Solitons in Bose– Einstein condensates with helicoidal spin–orbit coupling, Phys. Rev. Lett. 118 (19), 190401 (2017)
https://doi.org/10.1103/PhysRevLett.118.190401
29 Y. A. Bychkov and E. I. Rashba , Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C 17 (33), 6039 (1984)
https://doi.org/10.1088/0022-3719/17/33/015
30 G. Dresselhaus , Spin–orbit coupling effects in zinc blende structures, Phys. Rev. 100 (2), 580 (1955)
https://doi.org/10.1103/PhysRev.100.580
31 X. W. Luo , K. Sun , and C. Zhang , Spin-tensormomentum-coupled Bose–Einstein condensates, Phys. Rev. Lett. 119 (19), 193001 (2017)
https://doi.org/10.1103/PhysRevLett.119.193001
32 R. X. Zhong , Z. P. Chen , C. Q. Huang , Z. H. Luo , H. S. Tan , B. A. Malomed , and Y. Y. Li , Self-trapping under two-dimensional spin–orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13 (4), 130311 (2018)
https://doi.org/10.1007/s11467-018-0778-y
33 S. W. Song , L. Wen , C. F. Liu , S. C. Gou , and W. M. Liu , Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates, Front. Phys. 8 (3), 302 (2013)
https://doi.org/10.1007/s11467-013-0350-8
34 Y. V. Kartashov , E. Y. Sherman , B. A. Malomed , and V. V. Konotop , Stable two-dimensional soliton complexes in Bose–Einstein condensates with helicoidal spin–orbit coupling, New J. Phys. 22 (10), 103014 (2020)
https://doi.org/10.1088/1367-2630/abb911
35 G. H. Chen , H. C. Wang , Z. P. Chen , and Y. Liu , Fundamental modes in waveguide pipe twisted by saturated double-well potential, Front. Phys. 12 (1), 124201 (2017)
https://doi.org/10.1007/s11467-016-0601-6
36 K. Jiménez-García , L. J. LeBlanc , R. A. Williams , M. C. Beeler , C. Qu , M. Gong , C. Zhang , and I. B. Spielman , Tunable spin–orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett. 114 (12), 125301 (2015)
https://doi.org/10.1103/PhysRevLett.114.125301
37 X. Luo , L. Wu , J. Chen , Q. Guan , K. Gao , Z. F. Xu , L. You , and R. Wang , Tunable atomic spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep. 6 (1), 18983 (2016)
https://doi.org/10.1038/srep18983
38 S. Manakov , On the theory of two-dimensional stationary self-focusing electromagnetic waves, J. Exp. Theor. Phys. 38, 248 (1974)
39 Y. Li , L. P. Pitaevskii , and S. Stringari , Quantum tricriticality and phase transitions in spin–orbit coupled Bose– Einstein condensates, Phys. Rev. Lett. 108 (22), 225301 (2012)
https://doi.org/10.1103/PhysRevLett.108.225301
40 Y. Yang , P. Gao , Z. Wu , L. C. Zhao , and Z. Y. Yang , Matter-wave stripe solitons induced by helicoidal spin– orbit coupling, Ann. Phys. 431, 168562 (2021)
https://doi.org/10.1016/j.aop.2021.168562
41 B. Guo , L. Ling , and Q. P. Liu , Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85 (2), 026607 (2012)
https://doi.org/10.1103/PhysRevE.85.026607
42 C. Liu and N. Akhmediev , Super-regular breathers in nonlinear systems with self-steepening effect, Phys. Rev. E 100 (6), 062201 (2019)
https://doi.org/10.1103/PhysRevE.100.062201
43 L. Duan , Z. Y. Yang , P. Gao , and W. L. Yang , Excitation conditions of several fundamental nonlinear waves on continuous-wave background, Phys. Rev. E 99 (1), 012216 (2019)
https://doi.org/10.1103/PhysRevE.99.012216
44 L. C. Zhao and J. Liu , Localized nonlinear waves in a twomode nonlinear fiber, J. Opt. Soc. Am. B 29 (11), 3119 (2012)
https://doi.org/10.1364/JOSAB.29.003119
45 L. Ling , L. C. Zhao , and B. Guo , Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations, Nonlinearity 28 (9), 3243 (2015)
https://doi.org/10.1088/0951-7715/28/9/3243
46 L. C. Zhao , C. Liu , and Z. Y. Yang , The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers, Commun. Nonlinear Sci. Numer. Simul. 20, 1007 (2014)
47 Y. H. Qin , Y. Wu , L. C. Zhao , and Z. Y. Yang , Interference properties of two-component matter wave solitons, Chin. Phys. B 29 (2), 020303 (2020)
https://doi.org/10.1088/1674-1056/ab65b7
48 L. Ling and L. C. Zhao , Integrable pair-transition-coupled nonlinear Schrödinger equations, Phys. Rev. E 92 (2), 022924 (2015)
https://doi.org/10.1103/PhysRevE.92.022924
49 N. Devine , A. Ankiewicz , G. Genty , J. M. Dudley , and N. Akhmediev , Recurrence phase shift in Fermi–Pasta–Ulam nonlinear dynamics, Phys. Lett. A 375, 4158 (2011)
https://doi.org/10.1016/j.physleta.2011.10.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed