Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 31502   https://doi.org/10.1007/s11467-021-1128-z
  本期目录
Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
X. Wu, P. Z. Zhao()
Department of Physics, Shandong University, Jinan 250100, China
 全文: PDF(1526 KB)  
Abstract

Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.

Key wordsnonadiabatic geometric quantum computation    dynamical decoupling    XXZ Hamiltonian
收稿日期: 2021-08-23      出版日期: 2021-11-23
Corresponding Author(s): P. Z. Zhao   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 31502.
X. Wu, P. Z. Zhao. Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian. Front. Phys. , 2022, 17(3): 31502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1128-z
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/31502
1 P. W. Shor , Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5), 1484 (1997)
https://doi.org/10.1137/S0097539795293172
2 L. K. Grover , Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79 (2), 325 (1997)
https://doi.org/10.1103/PhysRevLett.79.325
3 M. J. Bremner , C. M. Dawson , J. L. Dodd , A. Gilchrist , A. W. Harrow , D. Mortimer , M. A. Nielsen , and T. J. Osborne , Practical scheme for quantum computation with any two-qubit entangling gate, Phys. Rev. Lett. 89 (24), 247902 (2002)
https://doi.org/10.1103/PhysRevLett.89.247902
4 M. V. Berry , Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392 (1802), 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
5 F. Wilczek and A. Zee , Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52 (24), 2111 (1984)
https://doi.org/10.1103/PhysRevLett.52.2111
6 J. A. Jones , V. Vedral , A. Ekert , and G. Castagnoli , Geometric quantum computation using nuclear magnetic resonance, Nature 403 (6772), 869 (2000)
https://doi.org/10.1038/35002528
7 P. Zanardi and M. Rasetti , Holonomic quantum computation, Phys. Lett. A 264 (2-3), 94 (1999)
https://doi.org/10.1016/S0375-9601(99)00803-8
8 L. M. Duan , J. I. Cirac , and P. Zoller , Geometric manipulation of trapped ions for quantum computation, Science 292 (5522), 1695 (2001)
https://doi.org/10.1126/science.1058835
9 M. Born and V. Fock , Beweis des adiabatensatzes, Z. Phys. 51 (3-4), 165 (1928)
https://doi.org/10.1007/BF01343193
10 A. Messiah , Quantum Mechanics, North-Holland, Amsterdam, Vol. 2, (1962)
11 D. M. Tong , Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation, Phys. Rev. Lett. 104 (12), 120401 (2010)
https://doi.org/10.1103/PhysRevLett.104.120401
12 X. B. Wang and M. Keiji , Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87 (9), 097901 (2001)
https://doi.org/10.1103/PhysRevLett.87.097901
13 S. L. Zhu and Z. D. Wang , Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89 (9), 097902 (2002)
https://doi.org/10.1103/PhysRevLett.89.097902
14 Y. Aharonov and J. Anandan , Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
15 E. Sjöqvist , D. M. Tong , L. Mauritz Andersson , B. Hessmo , M. Johansson , and K. Singh , Non-adiabatic holonomic quantum computation, New J. Phys. 14 (10), 103035 (2012)
https://doi.org/10.1088/1367-2630/14/10/103035
16 G. F. Xu , J. Zhang , D. M. Tong , E. Sjöqvist , and L. C. Kwek , Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109 (17), 170501 (2012)
https://doi.org/10.1103/PhysRevLett.109.170501
17 J. Anandan , Non-adiabatic non-abelian geometric phase, Phys. Lett. A 133 (4-5), 171 (1988)
https://doi.org/10.1016/0375-9601(88)91010-9
18 S. L. Zhu and Z. D. Wang , Unconventional geometric quantum computation, Phys. Rev. Lett. 91 (18), 187902 (2003)
https://doi.org/10.1103/PhysRevLett.91.187902
19 A. Friedenauer and E. Sjöqvist , Noncyclic geometric quantum computation, Phys. Rev. A 67 (2), 024303 (2003)
https://doi.org/10.1103/PhysRevA.67.024303
20 P. Solinas , P. Zanardi , N. Zanghì , and F. Rossi , Nonadiabatic geometrical quantum gates in semiconductor quantum dots, Phys. Rev. A 67 (5), 052309 (2003)
https://doi.org/10.1103/PhysRevA.67.052309
21 S. B. Zheng , Unconventional geometric quantum phase gates with a cavity QED system, Phys. Rev. A 70 (5), 052320 (2004)
https://doi.org/10.1103/PhysRevA.70.052320
22 X. D. Zhang , S. L. Zhu , L. Hu , and Z. D. Wang , Nonadiabatic geometric quantum computation using a single-loop scenario, Phys. Rev. A 71 (1), 014302 (2005)
https://doi.org/10.1103/PhysRevA.71.014302
23 C. Y. Chen , M. Feng , X. L. Zhang , and K. L. Gao , Strongdriving-assisted unconventional geometric logic gate in cavity QED, Phys. Rev. A 73 (3), 032344 (2006)
https://doi.org/10.1103/PhysRevA.73.032344
24 L. X. Cen , Z. D. Wang , and S. J. Wang , Scalable quantum computation in decoherence-free subspaces with trapped ions, Phys. Rev. A 74 (3), 032321 (2006)
https://doi.org/10.1103/PhysRevA.74.032321
25 X. L. Feng , Z. S. Wang , C. F. Wu , L. C. Kwek , C. H. Lai , and C. H. Oh , Scheme for unconventional geometric quantum computation in cavity QED, Phys. Rev. A 75 (5), 052312 (2007)
https://doi.org/10.1103/PhysRevA.75.052312
26 C. F. Wu , Z. S. Wang , X. L. Feng , H. S. Goan , L. C. Kwek , C. H. Lai , and C. H. Oh , Unconventional geometric quantum computation in a two-mode cavity, Phys. Rev. A 76 (2), 024302 (2007)
https://doi.org/10.1103/PhysRevA.76.024302
27 K. Kim , C. F. Roos , L. Aolita , H. Häffner , V. Nebendahl , and R. Blatt , Geometric phase gate on an optical transition for ion trap quantum computation, Phys. Rev. A 77, 050303(R) (2008)
https://doi.org/10.1103/PhysRevA.77.050303
28 X. L. Feng , C. F. Wu , H. Sun , and C. H. Oh , Geometric entangling gates in decoherence-free subspaces with minimal requirements, Phys. Rev. Lett. 103 (20), 200501 (2009)
https://doi.org/10.1103/PhysRevLett.103.200501
29 Y. Ota and Y. Kondo , Composite pulses in NMR as nonadiabatic geometric quantum gates, Phys. Rev. A 80 (2), 024302 (2009)
https://doi.org/10.1103/PhysRevA.80.024302
30 J. T. Thomas , M. Lababidi , and M. Z. Tian , Robustness of single-qubit geometric gate against systematic error, Phys. Rev. A 84 (4), 042335 (2011)
https://doi.org/10.1103/PhysRevA.84.042335
31 G. F. Xu and G. L. Long , Protecting geometric gates by dynamical decoupling, Phys. Rev. A 90 (2), 022323 (2014)
https://doi.org/10.1103/PhysRevA.90.022323
32 X. Wu and P. Z. Zhao , Universal nonadiabatic geometric gates protected by dynamical decoupling, Phys. Rev. A 102 (3), 032627 (2020)
https://doi.org/10.1103/PhysRevA.102.032627
33 C. F. Sun , G. C. Wang , C. F. Wu , H. D. Liu , X. L. Feng , J. L. Chen , and K. Xue , Non-adiabatic holonomic quantum computation in linear system-bath coupling, Sci. Rep. 6 (1), 20292 (2016)
https://doi.org/10.1038/srep20292
34 G. F. Xu and G. L. Long , Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces, Sci. Rep. 4 (1), 6814 (2015)
https://doi.org/10.1038/srep06814
35 P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases, Phys. Rev. A 94 (6), 062327 (2016)
https://doi.org/10.1103/PhysRevA.94.062327
36 P. Z. Zhao , X. D. Cui , G. F. Xu , E. Sjöqvist , and D. M. Tong , Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96 (5), 052316 (2017)
https://doi.org/10.1103/PhysRevA.96.052316
37 T. Chen and Z. Y. Xue , Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10 (5), 054051 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054051
38 B. J. Liu , X. K. Song , Z. Y. Xue , X. Wang , and M. H. Yung , Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123 (10), 100501 (2019)
https://doi.org/10.1103/PhysRevLett.123.100501
39 Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101 (3), 032322 (2020)
https://doi.org/10.1103/PhysRevA.101.032322
40 Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IEEE J. Sel. Top. Quantum Electron. 26 (3), 6700107 (2020)
https://doi.org/10.1109/JSTQE.2019.2922830
41 K. Z. Li , P. Z. Zhao , and D. M. Tong , Approach to realizing nonadiabatic geometric gates with prescribed evolution paths, Phys. Rev. Res. 2 (2), 023295 (2020)
https://doi.org/10.1103/PhysRevResearch.2.023295
42 J. Xu , S. Li , T. Chen , and Z. Y. Xue , Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15 (4), 41503 (2020)
https://doi.org/10.1007/s11467-020-0976-2
43 F. Q. Guo , J. L. Wu , X. Y. Zhu , Z. Jin , Y. Zeng , S. Zhang , L. L. Yan , M. Feng , and S. L. Su , Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102 (6), 062410 (2020)
https://doi.org/10.1103/PhysRevA.102.062410
44 M. R. Yun , F. Q. Guo , M. Li , L. L. Yan , M. Feng , Y. X. Li , and S. L. Su , Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29 (6), 8737 (2021)
https://doi.org/10.1364/OE.418626
45 D. Leibfried , B. DeMarco , V. Meyer , D. Lucas , M. Barrett , J. Britton , W. M. Itano , B. Jelenković , C. Langer , T. Rosenband , and D. J. Wineland , Experimental demonstration of a robust , high-fidelity geometric two ion-qubit phase gate, Nature 422 (6930), 412 (2003)
https://doi.org/10.1038/nature01492
46 J. F. Du , P. Zou , and Z. D. Wang , Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer, Phys. Rev. A 74, 020302(R) (2006)
https://doi.org/10.1103/PhysRevA.74.020302
47 P. Z. Zhao , Z. J. Z. Dong , Z. X. Zhang , G. P. Guo , D. M. Tong , and Y. Yin , Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, Sci. China Phys. Mech. Astron. 64 (5), 250362 (2021)
https://doi.org/10.1007/s11433-020-1641-1
48 Y. Xu , Z. Hua , T. Chen , X. Pan , X. Li , J. Han , W. Cai , Y. Ma , H. Wang , Y. P. Song , Z. Y. Xue , and L. Sun , Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124 (23), 230503 (2020)
https://doi.org/10.1103/PhysRevLett.124.230503
49 L. Viola , E. Knill , and S. Lloyd , Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82 (12), 2417 (1999)
https://doi.org/10.1103/PhysRevLett.82.2417
50 C. N. Yang and C. P. Yang , One-dimensional chain of anisotropic spin-spin interactions (I): Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150 (1), 321 (1966)
https://doi.org/10.1103/PhysRev.150.321
51 J. D. Johnson and M. McCoy , Low-temperature thermodynamics of the |∆| ≥ 1 Heisenberg-Ising ring, Phys. Rev. A 6 (4), 1613 (1972)
https://doi.org/10.1103/PhysRevA.6.1613
52 F. C. Alcaraz and A. L. Malvezzi , Critical and off-critical properties of the XXZ chain in external homogeneous and staggered magnetic fields, J. Phys. A 28 (6), 1521 (1995)
https://doi.org/10.1088/0305-4470/28/6/009
53 N. Canosa and R. Rossignoli , Global entanglement in XXZ chains, Phys. Rev. A 73 (2), 022347 (2006)
https://doi.org/10.1103/PhysRevA.73.022347
54 O. Breunig , M. Garst , E. Sela , B. Buldmann , P. Becker , L. Bohaty , R. Müller , and T. Lorenz , Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field, Phys. Rev. Lett. 111 (18), 187202 (2013)
https://doi.org/10.1103/PhysRevLett.111.187202
55 U. Glaser , H. Büttner , and H. Fehske , Entanglement and correlation in anisotropic quantum spin systems, Phys. Rev. A 68 (3), 032318 (2003)
https://doi.org/10.1103/PhysRevA.68.032318
56 E. Altman , W. Hofstetter , E. Demler , and M. D. Lukin , Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)
https://doi.org/10.1088/1367-2630/5/1/113
57 J. Zhou , Y. Hu , X. B. Zou , and G. C. Guo , Ground-state preparation of arbitrarily multipartite Dicke states in the one-dimensional ferromagnetic spin-1/2 chain, Phys. Rev. A 84 (4), 042324 (2011)
https://doi.org/10.1103/PhysRevA.84.042324
58 A. V. Gorshkov , S. R. Manmana , G. Chen , J. Ye , E. Demler , M. D. Lukin , and A. M. Rey , Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107 (11), 115301 (2011)
https://doi.org/10.1103/PhysRevLett.107.115301
59 A. V. Gorshkov , S. R. Manmana , G. Chen , E. Demler , M. D. Lukin , and A. M. Rey , Quantum magnetism with polar alkali-metal dimers, Phys. Rev. A 84 (3), 033619 (2011)
https://doi.org/10.1103/PhysRevA.84.033619
60 L. M. Duan , E. Demler , and M. D. Lukin , Controlling spin exchange interactions of ultracold atoms in optical lattices, Phys. Rev. Lett. 91 (9), 090402 (2003)
https://doi.org/10.1103/PhysRevLett.91.090402
61 S. Trotzky , P. Cheinet , S. Fölling , M. Feld , U. Schnorrberger , A. M. Rey , A. Polkovnikov , E. A. Demler , M. D. Lukin , and I. Bloch , Time-resolved observation and control of super-exchange interactions with ultracold atoms in optical lattices, Science 319 (5861), 295 (2008)
https://doi.org/10.1126/science.1150841
62 Y. Makhlin , G. Schön , and A. Shnirman , Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73 (2), 357 (2001)
https://doi.org/10.1103/RevModPhys.73.357
63 J. Siewert and R. Fazio , Quantum algorithms for Josephson networks, Phys. Rev. Lett. 87 (25), 257905 (2001)
https://doi.org/10.1103/PhysRevLett.87.257905
64 D. V. Averin and C. Bruder , Variable electrostatic transformer: Controllable coupling of two charge qubits, Phys. Rev. Lett. 91 (5), 057003 (2003)
https://doi.org/10.1103/PhysRevLett.91.057003
65 C. Testelin , F. Bernardot , B. Eble , and M. Chamarro , Hole-spin dephasing time associated with hyperfine interaction in quantum dots, Phys. Rev. B 79 (19), 195440 (2009)
https://doi.org/10.1103/PhysRevB.79.195440
66 Y. P. Shim , S. Oh , X. D. Hu , and M. Friesen , Controllable anisotropic exchange coupling between spin qubits in quantum dots, Phys. Rev. Lett. 106 (18), 180503 (2011)
https://doi.org/10.1103/PhysRevLett.106.180503
67 B. Urbaszek , X. Marie , T. Amand , O. Krebs , P. Voisin , P. Maletinsky , A. Högele , and A. Imamoglu , Nuclear spin physics in quantum dots: An optical investigation, Rev. Mod. Phys. 85 (1), 79 (2013)
https://doi.org/10.1103/RevModPhys.85.79
68 L. Viola , S. Lloyd , and E. Knill , Universal control of decoupled quantum systems, Phys. Rev. Lett. 83 (23), 4888 (1999)
https://doi.org/10.1103/PhysRevLett.83.4888
69 G. F. Xu , D. M. Tong , and E. Sjöqvist , Path-shortening realizations of nonadiabatic holonomic gates, Phys. Rev. A 98 (5), 052315 (2018)
https://doi.org/10.1103/PhysRevA.98.052315
70 P. Z. Zhao , X. Wu , and D. M. Tong , Dynamical-decoupling protected nonadiabatic holonomic quantum computation, Phys. Rev. A 103 (1), 012205 (2021)
https://doi.org/10.1103/PhysRevA.103.012205
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed