Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 31503   https://doi.org/10.1007/s11467-021-1130-5
  本期目录
Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity
Fu-Quan Dou(), Yuan-Jin Wang, Jian-An Sun
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
 全文: PDF(1553 KB)  
Abstract

Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery. Here, we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian. The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage. We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery. Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.

Key wordsquantum battery    charging and discharging dynamics    shortcuts to adiabaticity
收稿日期: 2021-09-01      出版日期: 2021-11-30
Corresponding Author(s): Fu-Quan Dou   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 31503.
Fu-Quan Dou, Yuan-Jin Wang, Jian-An Sun. Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity. Front. Phys. , 2022, 17(3): 31503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1130-5
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/31503
1 F. Campaioli, F. A. Pollock, and S. Vinjanampathy, Quantum batteries, in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International Publishing, Cham, 2018, pp 207–225
https://doi.org/10.1007/978-3-319-99046-0_8
2 S. Bhattacharjee and A. Dutta, Quantum thermal machines and batteries, arXiv: 2008.07889 [quant-ph] (2020)
3 J. Q. Quach and W. J. Munro, Using dark states to charge and stabilise open quantum batteries, arXiv: 2002.10044 [quant-ph](2020)
https://doi.org/10.1103/PhysRevApplied.14.024092
4 K. Sen and U. Sen, Local passivity and entanglement in shared quantum batteries, arXiv: 1911.05540 [quant-ph](2019)
5 F. H. Kamin, F. T. Tabesh, S. Salimi, and A. C. Santos, Entanglement, coherence and charging process of quantum batteries, Phys. Rev. E102, 052109 (2020)
https://doi.org/10.1103/PhysRevE.102.052109
6 L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett.125(4), 040601 (2020)
https://doi.org/10.1103/PhysRevLett.125.040601
7 M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, Dissipative dynamics of an open quantum battery, New J. Phys.22(8), 083085 (2020)
https://doi.org/10.1088/1367-2630/abaa01
8 F. Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett.122(21), 210601 (2019)
https://doi.org/10.1103/PhysRevLett.122.210601
9 F. Pirmoradian and K. Mølmer, Aging of a quantum battery, Phys. Rev. A100(4), 043833 (2019)
https://doi.org/10.1103/PhysRevA.100.043833
10 K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A. Acín, Entanglement generation is not necessary for optimal work extraction, Phys. Rev. Lett.111(24), 240401 (2013)
https://doi.org/10.1103/PhysRevLett.111.240401
11 F. T. Tabesh, F. H. Kamin, and S. Salimi, Environment-mediated charging process of quantum batteries, arXiv: 2005.12823 [quant-ph] (2020)
https://doi.org/10.1103/PhysRevA.102.052223
12 F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett.118(15), 150601 (2017)
https://doi.org/10.1103/PhysRevLett.118.150601
13 S. Gherardini, F. Campaioli, F. Caruso, and F. C. Binder, Stabilizing open quantum batteries by sequential measurements, Phys. Rev. Research2(1), 013095 (2020)
https://doi.org/10.1103/PhysRevResearch.2.013095
14 R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E87(4), 042123 (2013)
https://doi.org/10.1103/PhysRevE.87.042123
15 J. Monsel, M. Fellous-Asiani, B. Huard, and A. Auffèves, The energetic cost of work extraction, Phys. Rev. Lett.124(13), 130601 (2020)
16 F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, and A. C. Santos, Non-Markovian effects on charging and self-discharging process of quantum batteries, New J. Phys.22(8), 083007 (2020)
https://doi.org/10.1088/1367-2630/ab9ee2
17 D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M. Polini, High-power collective charging of a solid-state quantum battery, Phys. Rev. Lett.120(11), 117702 (2018)
https://doi.org/10.1103/PhysRevLett.120.117702
18 X. Zhang and M. blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 [quant-ph] (2018)
19 G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti, and M. Polini, Extractable work, the role of correlations, and asymptotic freedom in quantum batteries, Phys. Rev. Lett.122(4), 047702 (2019)
https://doi.org/10.1103/PhysRevLett.122.047702
20 F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys.17(7), 075015 (2015)
https://doi.org/10.1088/1367-2630/17/7/075015
21 A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Charging and energy fluctuations of a driven quantum battery, New J. Phys.22(6), 063057 (2020)
https://doi.org/10.1088/1367-2630/ab91fc
22 S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, and M. Lewenstein, Bounds on the capacity and power of quantum batteries, Phys. Rev. Research2(2), 023113 (2020)
https://doi.org/10.1103/PhysRevResearch.2.023113
23 B. Mohan and A. K. Pati, Reverse quantum speed limit: How slow quantum battery can discharge? arXiv: 2006.14523 [quant-ph] (2020)
https://doi.org/10.1103/PhysRevA.104.042209
24 W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun.9(1), 165 (2018)
https://doi.org/10.1038/s41467-017-01991-6
25 F. Caravelli, G. Coulter-De Wit, L. P. García-Pintos, and A. Hamma, Random quantum batteries, Phys. Rev. Research2(2), 023095 (2020)
https://doi.org/10.1103/PhysRevResearch.2.023095
26 T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A97(2), 022106 (2018)
https://doi.org/10.1103/PhysRevA.97.022106
27 S. Ghosh, T. Chanda, and A. Sen(De), Enhancement in the performance of a quantum battery by ordered and disordered interactions, Phys. Rev. A101(3), 032115 (2020)
https://doi.org/10.1103/PhysRevA.101.032115
28 F. Zhao, F. Q. Dou, and Q. Zhao, Quantum battery of interacting spins with environmental noise, Phys. Rev. A103(3), 033715 (2021)
https://doi.org/10.1103/PhysRevA.103.033715
29 D. Rossini, G. M. Andolina, and M. Polini, Many-body localized quantum batteries, Phys. Rev. B100(11), 115142 (2019)
https://doi.org/10.1103/PhysRevB.100.115142
30 S. Zakavati, F. T. Tabesh, and S. Salimi, Bounds on charging power of open quantum batteries, arXiv: 2003.09814 [quant-ph] (2020)
https://doi.org/10.1103/PhysRevE.104.054117
31 S. Ghosh, T. Chanda, S. Mal, and A. S. De, Fast charging of quantum battery assisted by noise, arXiv: 2005.12859 [quant-ph] (2020)
https://doi.org/10.1103/PhysRevA.104.032207
32 A. C. Santos, A. Saguia, and M. S. Sarandy, Stable and charge-switchable quantum batteries, Phys. Rev. E101(6), 062114 (2020)
https://doi.org/10.1103/PhysRevE.101.062114
33 D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and M. Polini, Quantum charging supremacy via Sachdevye–Kitaev batteries, arXiv: 1912.07234 [condmat.str-el] (2019)
34 D. Rosa, D. Rossini, G. M. Andolina,, M. Polini, and M. Carrega, Ultra stable charging of fastest scrambling quantum batteries, arXiv: 1912.07247 [condmat.str-el] (2019)
https://doi.org/10.1007/JHEP11(2020)067
35 Y. Y. Zhang, T. R. Yang, L. Fu, and X. Wang, Powerful harmonic charging in a quantum battery, Phys. Rev. E99(5), 052106 (2019)
https://doi.org/10.1103/PhysRevE.99.052106
36 G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V. Giovannetti, and M. Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries, Phys. Rev. B98(20), 205423 (2018)
https://doi.org/10.1103/PhysRevB.98.205423
37 G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M. Polini, Quantum versus classical many-body batteries, Phys. Rev. B99(20), 205437 (2019)
https://doi.org/10.1103/PhysRevB.99.205437
38 J. Chen,L. Zhan,L. Shao,X. Zhang,Y. Zhang, and X. Wang, Charging quantum batteries with a general harmonic driving field, Ann. Phys. 532(4), 1900487 (2020)
https://doi.org/10.1002/andp.201900487
39 A. C. Santos,B. Çakmak,S. Campbell, and N. T. Zinner, Stable adiabatic quantum batteries, Phys. Rev. E 100(3), 032107 (2019)
https://doi.org/10.1103/PhysRevE.100.032107
40 F. Q. Dou,Y. J. Wang, and J. A. Sun, Closed-loop three-level charged quantum battery, EPL (Europhysics Letters) 131(4), 43001 (2020)
https://doi.org/10.1209/0295-5075/131/43001
41 N. V. Vitanov,A. A. Rangelov,B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)
https://doi.org/10.1103/RevModPhys.89.015006
42 K. Bergmann,H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)
https://doi.org/10.1103/RevModPhys.70.1003
43 B. W. Shore, Picturing stimulated Raman adiabatic passage: A STIRAP tutorial, Adv. Opt. Photonics 9(3), 563 (2017)
https://doi.org/10.1364/AOP.9.000563
44 X. Chen,I. Lizuain,A. Ruschhaupt,D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
https://doi.org/10.1103/PhysRevLett.105.123003
45 D. Guéry-Odelin,A. Ruschhaupt,A. Kiely,E. Torrontegui,S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
https://doi.org/10.1103/RevModPhys.91.045001
46 M. Theisen,F. Petiziol,S. Carretta,P. Santini, and S. Wimberger, Superadiabatic driving of a three-level quantum system, Phys. Rev. A 96(1), 013431 (2017)
https://doi.org/10.1103/PhysRevA.96.013431
47 F. Dou,J. Liu, and L. Fu, High-fidelity superadiabatic population transfer of a two-level system with a linearly chirped Gaussian pulse, EPL (Europhysics Letters) 116(6), 60014 (2016)
https://doi.org/10.1209/0295-5075/116/60014
48 M. V. Berry, Transitionless quantum driving, J. Phys. A Math. Theor. 42(36), 365303 (2009)
https://doi.org/10.1088/1751-8113/42/36/365303
49 M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107(46), 9937 (2003)
https://doi.org/10.1021/jp030708a
50 A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
https://doi.org/10.1103/PhysRevLett.111.100502
51 L. Giannelli and E. Arimondo, Three-level superadiabatic quantum driving, Phys. Rev. A 89(3), 033419 (2014)
https://doi.org/10.1103/PhysRevA.89.033419
52 N. V. Vitanov and M. Drewsen, Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity, Phys. Rev. Lett. 122(17), 173202 (2019)
https://doi.org/10.1103/PhysRevLett.122.173202
53 S. Li,P. Shen,T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
https://doi.org/10.1007/s11467-021-1087-4
54 A. Vepsäläinen,S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)
https://doi.org/10.1126/sciadv.aau5999
55 A. Barfuss,J. Kölbl,L. Thiel,J. Teissier,M. Kasperczyk, and P. Maletinsky, Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14(11), 1087 (2018)
https://doi.org/10.1038/s41567-018-0231-8
56 J. Kölbl,A. Barfuss,M. S. Kasperczyk,L. Thiel,A. A. Clerk,H. Ribeiro, and P. Maletinsky, Initialization of single spin dressed states using shortcuts to adiabaticity, Phys. Rev. Lett. 122(9), 090502 (2019)
https://doi.org/10.1103/PhysRevLett.122.090502
57 J. Zhang,J. H. Shim,I. Niemeyer,T. Taniguchi,T. Teraji,H. Abe,S. Onoda,T. Yamamoto,T. Ohshima,J. Isoya, and D. Suter, Experimental implementation of assisted quantum adiabatic passage in a single spin, Phys. Rev. Lett. 110(24), 240501 (2013)
https://doi.org/10.1103/PhysRevLett.110.240501
58 J. F. Schaff,X. L. Song,P. Capuzzi,P. Vignolo, and G. Labeyrie, Shortcut to adiabaticity for an interacting Bose–Einstein condensate, EPL (Europhysics Letters) 93(2), 23001 (2011)
https://doi.org/10.1209/0295-5075/93/23001
59 Y. X. Du,Z. T. Liang,Y. C. Li,X. X. Yue,Q. X. Lv,W. Huang,X. Chen,H. Yan, and S. L. Zhu, Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms, Nat. Commun. 7(1), 12479 (2016)
https://doi.org/10.1038/ncomms12479
60 L. F. C. Moraes,A. Saguia,A. C. Santos, and M. S. Sarandy, Charging power and stability of always-on transitionless driven quantum batteries, arXiv: 2012.05855 [quant-ph] (2020)
https://doi.org/10.1209/0295-5075/ac1363
61 A. E. Allahverdyan,R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, EPL (Europhysics Letters) 67(4), 565 (2004)
https://doi.org/10.1209/epl/i2004-10101-2
62 M. Alimuddin,T. Guha, and P. Parashar, Structure of passive states and its implication in charging quantum batteries, Phys. Rev. E 102(2), 022106 (2020)
https://doi.org/10.1103/PhysRevE.102.022106
63 B. Akmak, Ergotropy from coherences in an open quantum system, arXiv: 2005.08489 [quant-ph] (2020)
https://doi.org/10.1103/PhysRevE.102.042111
64 K. Ito and G. Watanabe, Collectively enhanced high-power and high-capacity charging of quantum batteries via quantum heat engines, arXiv: 2008.07089 [quant-ph] (2020)
65 F. Tacchino,T. F. F. Santos,D. Gerace,M. Campisi, and M. F. Santos, Non-equilibrium steady states as resources for quantum heat engines, arXiv: 2007.04463 [quant-ph] (2020)
66 J. R. Kuklinski,U. Gaubatz,F. T. Hioe, and K. Bergmann, Adiabatic population transfer in a three-level system driven by delayed laser pulses, Phys. Rev. A 40(11), 6741 (1989)
https://doi.org/10.1103/PhysRevA.40.6741
67 F. Petiziol,E. Arimondo,L. Giannelli,F. Mintert, and S. Wimberger, Optimized three-level quantum transfers based on frequency-modulated optical excitations, Sci. Rep. 10(1), 2185 (2020)
https://doi.org/10.1038/s41598-020-59046-8
68 A. Vepsäläinen and G. S. Paraoanu, Simulating spin chains using a superconducting circuit: Gauge invariance, supera-diabatic transport, and broken time-reversal symmetry, Adv. Quantum Technol. 3(4), 1900121 (2020)
https://doi.org/10.1002/qute.201900121
69 C. K. Hu,J. Qiu,P. J. P. Souza,J. Yuan,Y. Zhou,L. Zhang,J. Chu,X. Pan,L. Hu,J. Li,Y. Xu,Y. Zhong,S. Liu,F. Yan,D. Tan,R. Bachelard,C. J. Villas-Boas,A. C. Santos, and D. Yu, Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 [quant-ph] (2021)
70 J. H. Zhang and F. Q. Dou, High-fidelity formation of deeply bound ultracold molecules via non-Hermitian shortcut to adiabaticity, New J. Phys. 23(6), 063001 (2021)
https://doi.org/10.1088/1367-2630/abffff
71 H. Hu,S. Qi, and J. Jing, Fast and stable charging via a shortcut to adiabaticity, arXiv: 2104.12143 [quant-ph] (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed