Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42503   https://doi.org/10.1007/s11467-021-1133-2
  本期目录
Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential
Yi-Piao Wu1, Guo-Qing Zhang1,2, Cai-Xia Zhang1,2(), Jian Xu3(), Dan-Wei Zhang1,2()
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
3. College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
 全文: PDF(1664 KB)  
Abstract

We investigate the mean-field energy spectrum and dynamics in a Bose–Einstein condensate in a double-well potential with non-Hermiticity from the nonreciprocal hopping, and show that the interplay of nonreciprocity and nonlinearity leads to exotic properties. Under the two-mode and mean-field approximations, the nonreciprocal generalization of the nonlinear Schrödinger equation and Bloch equations of motion for this system are obtained. We analyze the P T phase diagram and the dynamical stability of fixed points. The reentrance of P T -symmetric phase and the reformation of stable fixed points with increasing the nonreciprocity parameter are found. Besides, we uncover a linear selftrapping effect induced by the nonreciprocity. In the nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity and then collapses in the P T -broken phase, and can finally be recovered in the reentrant P T -symmetric phase.

Key wordsBose–Einstein condensate    non-Hermitian physics    nonlinear dynamics    parity–time symmetry
收稿日期: 2021-11-01      出版日期: 2021-12-16
Corresponding Author(s): Cai-Xia Zhang,Jian Xu,Dan-Wei Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42503.
Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential. Front. Phys. , 2022, 17(4): 42503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1133-2
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42503
1 C. M. Bender , Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (6), 947 (2007)
https://doi.org/10.1088/0034-4885/70/6/R03
2 R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , and D. N. Christodoulides , NonHermitian physics and PT symmetry, Nat. Phys. 14 (1), 11 (2018)
https://doi.org/10.1038/nphys4323
3 M. A. Miri and A. Alù , Exceptional points in optics and photonics, Science 363 (6422), eaar7709 (2019)
https://doi.org/10.1126/science.aar7709
4 Y. Ashida , Z. Gong , and M. Ueda , Non-Hermitian physics, Adv. Phys. 69 (3), 249 (2020)
https://doi.org/10.1126/science.aar7709
5 E. J. Bergholtz , J. C. Budich , and F. K. Kunst , Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93 (1), 015005 (2021)
https://doi.org/10.1103/RevModPhys.93.015005
6 C. M. Bender and S. Boettcher , Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (24), 5243 (1998)
https://doi.org/10.1103/PhysRevLett.80.5243
7 W. D. Heiss , Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37 (6), 2455 (2004)
https://doi.org/10.1088/0305-4470/37/6/034
8 W. D. Heiss , The physics of exceptional points, J. Phys. A Math. Theor. 45 (44), 444016 (2012)
https://doi.org/10.1088/1751-8113/45/44/444016
9 L. Pan , S. Chen , and X. Cui , High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99 (1), 011601 (2019)
https://doi.org/10.1103/PhysRevA.99.011601
10 Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
https://doi.org/10.1103/PhysRevX.8.031079
11 K. Kawabata , T. Bessho , and M. Sato , Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123 (6), 066405 (2019)
https://doi.org/10.1103/PhysRevLett.123.066405
12 N. Hatano and D. R. Nelson , Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77 (3), 570 (1996)
https://doi.org/10.1103/PhysRevLett.77.570
13 S. Yao and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
https://doi.org/10.1103/PhysRevLett.121.086803
14 F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk–boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
https://doi.org/10.1103/PhysRevLett.121.026808
15 L. Jin and Z. Song , Bulk–boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Phys. Rev. B 99 (8), 081103 (2019)
https://doi.org/10.1103/PhysRevB.99.081103
16 S. Longhi , Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122 (23), 237601 (2019)
https://doi.org/10.1103/PhysRevLett.122.237601
17 H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , and S. Chen , Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices, Phys. Rev. B 100 (5), 054301 (2019)
https://doi.org/10.1103/PhysRevB.100.054301
18 D. W. Zhang , L. Z. Tang , L. J. Lang , H. Yan , and S. L. Zhu , Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63 (6), 267062 (2020)
https://doi.org/10.1007/s11433-020-1521-9
19 X. W. Luo and C. Zhang , Non-Hermitian disorder-induced topological insulators, arXiv: 1912.10652v1 (2019)
20 L. Z. Tang , L. F. Zhang , G. Q. Zhang , and D. W. Zhang , Topological Anderson insulators in two-dimensional nonHermitian disordered systems, Phys. Rev. A 101 (6), 063612 (2020)
https://doi.org/10.1103/PhysRevA.101.063612
21 H. Liu , Z. Su , Z. Q. Zhang , and H. Jiang , Topological Anderson insulator in two-dimensional non-Hermitian systems, Chin. Phys. B 29 (5), 050502 (2020)
https://doi.org/10.1088/1674-1056/ab8201
22 Q. B. Zeng and Y. Xu , Winding numbers and generalized mobility edges in non-Hermitian systems, Phys. Rev. Research 2 (3), 033052 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033052
23 L. Li , C. H. Lee , S. Mu , and J. Gong , Critical nonHermitian skin effect, Nat. Commun. 11 (1), 5491 (2020)
https://doi.org/10.1038/s41467-020-18917-4
24 D. W. Zhang , Y. L. Chen , G. Q. Zhang , L. J. Lang , Z. Li , and S. L. Zhu , Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry–André–Harper model, Phys. Rev. B 101 (23), 235150 (2020)
https://doi.org/10.1103/PhysRevB.101.235150
25 T. Liu , J. J. He , T. Yoshida , Z. L. Xiang , and F. Nori , NonHermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102 (23), 235151 (2020)
https://doi.org/10.1103/PhysRevB.102.235151
26 Z. Xu , S. Chen , Z. Xu , and S. Chen , Topological Bose– Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102 (3), 035153 (2020)
https://doi.org/10.1103/PhysRevB.102.035153
27 T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , and R. Thomale , Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16 (7), 747 (2020)
https://doi.org/10.1038/s41567-020-0922-9
28 M. Ezawa , Electric-circuit simulation of the Schrödinger equation and non-Hermitian quantum walks, Phys. Rev. B 100 (16), 165419 (2019)
https://doi.org/10.1103/PhysRevB.100.165419
29 L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , and P. Xue , Non-Hermitian bulk–boundary correspondence in quantum dynamics, Nat. Phys. 16 (7), 761 (2020)
https://doi.org/10.1038/s41567-020-0836-6
30 Z. Yu and S. Fan , Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3 (2), 91 (2009)
https://doi.org/10.1038/nphoton.2008.273
31 M. S. Kang , A. Butsch , and P. S. J. Russell , Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5 (9), 549 (2011)
https://doi.org/10.1038/nphoton.2011.180
32 L. Bi , J. Hu , P. Jiang , D. H. Kim , G. F. Dionne , L. C. Kimerling , and C. A. Ross , On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photonics 5 (12), 758 (2011)
https://doi.org/10.1038/nphoton.2011.270
33 L. Fan , J. Wang , L. T. Varghese , H. Shen , B. Niu , Y. Xuan , A. M. Weiner , and M. Qi , An all-silicon passive optical diode, Science 335 (6067), 447 (2012)
https://doi.org/10.1126/science.1214383
34 S. A. R. Horsley , J. H. Wu , M. Artoni , and G. C. La Rocca , Optical nonreciprocity of cold atom Bragg mirrors in motion, Phys. Rev. Lett. 110 (22), 223602 (2013)
https://doi.org/10.1103/PhysRevLett.110.223602
35 B. Peng , Ş. K. Özdemir , F. Lei , F. Monifi , M. Gianfreda , G. L. Long , S. Fan , F. Nori , C. M. Bender , and L. Yang , Parity–time-symmetric whispering-gallery microcavities., Nat. Phys. 10 (5), 394 (2014)
https://doi.org/10.1038/nphys2927
36 Y. P. Wang , J. W. Rao , Y. Yang , P. C. Xu , Y. S. Gui , B. M. Yao , J. Q. You , and C. M. Hu , Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123 (12), 127202 (2019)
https://doi.org/10.1103/PhysRevLett.123.127202
37 Y. Zhao , J. Rao , Y. Gui , Y. Wang , and C. M. Hu , Broadband nonreciprocity realized by locally controlling the Magnon’s radiation, Phys. Rev. Appl. 14 (1), 014035 (2020)
https://doi.org/10.1103/PhysRevApplied.14.014035
38 Z. Shen , Y. L. Zhang , Y. Chen , C. L. Zou , Y. F. Xiao , X. B. Zou , F. W. Sun , G. C. Guo , and C. H. Dong , Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10 (10), 657 (2016)
https://doi.org/10.1038/nphoton.2016.161
39 F. Ruesink , M. A. Miri , A. Alù , and E. Verhagen , Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7 (1), 13662 (2016)
https://doi.org/10.1038/ncomms13662
40 N. R. Bernier , L. D. Tóth , A. Koottandavida , M. A. Ioannou , D. Malz , A. Nunnenkamp , A. K. Feofanov , and T. J. Kippenberg , Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8 (1), 604 (2017)
https://doi.org/10.1038/s41467-017-00447-1
41 K. Fang , J. Luo , A. Metelmann , M. H. Matheny , F. Marquardt , A. A. Clerk , and O. Painter , Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13 (5), 465 (2017)
https://doi.org/10.1038/nphys4009
42 G. A. Peterson , F. Lecocq , K. Cicak , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Demonstration of effcient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7 (3), 031001 (2017)
https://doi.org/10.1103/PhysRevX.7.031001
43 H. Xu , L. Jiang , A. A. Clerk , and J. G. E. Harris , Nonreciprocal control and cooling of phonon modes in an optomechanical system, Nature 568 (7750), 65 (2019)
https://doi.org/10.1038/s41586-019-1061-2
44 W. Gou , T. Chen , D. Xie , T. Xiao , T. S. Deng , B. Gadway , W. Yi , and B. Yan , Tunable nonreciprocal quantum transport through a dissipative Aharonov–Bohm ring in ultracold atoms, Phys. Rev. Lett. 124 (7), 070402 (2020)
https://doi.org/10.1103/PhysRevLett.124.070402
45 D. W. Zhang , Y. Q. Zhu , Y. X. Zhao , H. Yan , and S. L. Zhu , Topological quantum matter with cold atoms, Adv. Phys. 67 (4), 253 (2018)
https://doi.org/10.1080/00018732.2019.1594094
46 Y. V. Kartashov , B. A. Malomed , and L. Torner , Solitons in nonlinear lattices, Rev. Mod. Phys. 83 (1), 247 (2011)
https://doi.org/10.1103/RevModPhys.83.247
47 O. Morsch and M. Oberthaler , Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (1), 179 (2006)
https://doi.org/10.1103/RevModPhys.78.179
48 B. Wu and Q. Niu , Nonlinear Landau–Zener tunneling, Phys. Rev. A 61 (2), 023402 (2000)
https://doi.org/10.1103/PhysRevA.61.023402
49 J. Liu , L. Fu , B. Y. Ou , S. G. Chen , D. I. Choi , B. Wu , and Q. Niu , Theory of nonlinear Landau–Zener tunneling, Phys. Rev. A 66 (2), 023404 (2002)
https://doi.org/10.1103/PhysRevA.66.023404
50 J. Liu , B. Wu , and Q. Niu , Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90 (17), 170404 (2003)
https://doi.org/10.1103/PhysRevLett.90.170404
51 M. E. Kellman and V. Tyng , Bifurcation effects in coupled Bose–Einstein condensates, Phys. Rev. A 66 (1), 013602 (2002)
https://doi.org/10.1103/PhysRevA.66.013602
52 A. P. Hines , R. H. McKenzie , and G. J. Milburn , Quantum entanglement and fixed-point bifurcations, Phys. Rev. A 71 (4), 042303 (2005)
https://doi.org/10.1103/PhysRevA.71.042303
53 I. Siddiqi , R. Vijay , F. Pierre , C. M. Wilson , L. Frunzio , M. Metcalfe , C. Rigetti , R. J. Schoelkopf , M. H. Devoret , D. Vion , and D. Esteve , Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction, Phys. Rev. Lett. 94 (2), 027005 (2005)
https://doi.org/10.1103/PhysRevLett.94.027005
54 T. Zibold , E. Nicklas , C. Gross , and M. K. Oberthaler , Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett. 105 (20), 204101 (2010)
https://doi.org/10.1103/PhysRevLett.105.204101
55 C. Lee , L. B. Fu , and Y. S. Kivshar , Many-body quantum coherence and interaction blockade in Josephson-linked Bose–Einstein condensates, Europhys. Lett. 81 (6), 60006 (2008)
https://doi.org/10.1209/0295-5075/81/60006
56 C. Lee , Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled twocomponent Bose–Einstein condensate, Phys. Rev. Lett. 102 (7), 070401 (2009)
https://doi.org/10.1103/PhysRevLett.102.070401
57 C. Lee , J. Huang , H. Deng , H. Dai , and J. Xu , Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7 (1), 109 (2012)
https://doi.org/10.1007/s11467-011-0228-6
58 A. Burchianti , C. Fort , and M. Modugno , Josephson plasma oscillations and the Gross–Pitaevskii equation: Bogoliubov approach versus two-mode model, Phys. Rev. A 95 (2), 023627 (2017)
https://doi.org/10.1103/PhysRevA.95.023627
59 S. Martínez-Garaot , G. Pettini , and M. Modugno , Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98 (4), 043624 (2018)
https://doi.org/10.1103/PhysRevA.98.043624
60 D. W. Zhang , L. B. Fu , Z. D. Wang , and S. L. Zhu , Josephson dynamics of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential, Phys. Rev. A 85 (4), 043609 (2012)
https://doi.org/10.1103/PhysRevA.85.043609
61 D. W. Zhang , Z. D. Wang , and S. L. Zhu , Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7 (1), 31 (2012)
https://doi.org/10.1007/s11467-011-0223-y
62 W. Y. Wang , J. Lin , and J. Liu , Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields, Front. Phys. 16 (5), 52502 (2021)
https://doi.org/10.1007/s11467-021-1078-5
63 A. Smerzi , S. Fantoni , S. Giovanazzi , and S. R. Shenoy , Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79 (25), 4950 (1997)
https://doi.org/10.1103/PhysRevLett.79.4950
64 S. Raghavan , A. Smerzi , S. Fantoni , and S. R. Shenoy , Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, ff oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59 (1), 620 (1999)
https://doi.org/10.1103/PhysRevA.59.620
65 M. Albiez , R. Gati , J. Fölling , S. Hunsmann , M. Cristiani , and M. K. Oberthaler , Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95 (1), 010402 (2005)
https://doi.org/10.1103/PhysRevLett.95.010402
66 M. Abbarchi , A. Amo , V. G. Sala , D. D. Solnyshkov , H. Flayac , L. Ferrier , I. Sagnes , E. Galopin , A. Lemaĭtre , G. Malpuech , and J. Bloch , Macroscopic quantum selftrapping and Josephson oscillations of exciton polaritons, Nat. Phys. 9 (5), 275 (2013)
https://doi.org/10.1038/nphys2609
67 V. V. Konotop , J. Yang , and D. A. Zezyulin , Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88 (3), 035002 (2016)
https://doi.org/10.1103/RevModPhys.88.035002
68 E. M. Graefe , H. J. Korsch , and A. E. Niederle , Mean-field dynamics of a non-Hermitian Bose–Hubbard dimer, Phys. Rev. Lett. 101 (15), 150408 (2008)
https://doi.org/10.1103/PhysRevLett.101.150408
69 E. M. Graefe , U. Günther , H. J. Korsch , and A. E. Niederle , A non-HermitianPT symmetric Bose–Hubbard model: Eigenvalue rings from unfolding higher-order exceptional points, J. Phys. A Math. Theor. 41 (25), 255206 (2008)
https://doi.org/10.1088/1751-8113/41/25/255206
70 D. Witthaut , F. Trimborn , and S. Wimberger , Dissipationinduced coherence and stochastic resonance of an open two-mode Bose–Einstein condensate, Phys. Rev. A 79 (3), 033621 (2009)
https://doi.org/10.1103/PhysRevA.79.033621
71 E. M. Graefe and C. Liverani , Mean-field approximation for a Bose–Hubbard dimer with complex interaction strength, J. Phys. A Math. Theor. 46 (45), 455201 (2013)
https://doi.org/10.1088/1751-8113/46/45/455201
72 E. M. Graefe , H. J. Korsch , and A. E. Niederle , Quantum-classical correspondence for a non-Hermitian Bose–Hubbard dimer, Phys. Rev. A 82 (1), 013629 (2010)
https://doi.org/10.1103/PhysRevA.82.013629
73 E. M. Graefe , Stationary states of a PT symmetric twomode Bose–Einstein condensate, J. Phys. A Math. Theor. 45 (44), 444015 (2012)
https://doi.org/10.1088/1751-8113/45/44/444015
74 H. Cartarius and G. Wunner , Model of a PT-symmetric Bose–Einstein condensate in a δ-function double-well potential, Phys. Rev. A 86 (1), 013612 (2012)
https://doi.org/10.1103/PhysRevA.86.013612
75 D. Dast D. Haag H. Cartarius G. Wunner R. Eichler , and J. Main , A Bose–Einstein condensate in a PT-symmetric double well, Fortschr. Phys. 61 (2-3), 124 (2013)
https://doi.org/10.1002/prop.201200080
76 D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Eigenvalue structure of a Bose–Einstein condensate in a PT-symmetric double well, J. Phys. A Math. Theor. 46 (37), 375301 (2013)
https://doi.org/10.1088/1751-8113/46/37/375301
77 F. Single , H. Cartarius , G. Wunner , and J. Main , Coupling approach for the realization of a PT-symmetric potential for a Bose–Einstein condensate in a double well, Phys. Rev. A 90 (4), 042123 (2014)
https://doi.org/10.1103/PhysRevA.90.042123
78 R. Fortanier , D. Dast , D. Haag , H. Cartarius , J. Main , G. Wunner , and R. Gutöhrlein , Dipolar Bose–Einstein condensates in a PT-symmetric double-well potential, Phys. Rev. A 89 (6), 063608 (2014)
https://doi.org/10.1103/PhysRevA.89.063608
79 D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Bose–Einstein condensates with balanced gain and loss beyond mean-field theory, Phys. Rev. A 94 (5), 053601 (2016)
https://doi.org/10.1103/PhysRevA.94.053601
80 D. Haag , D. Dast , H. Cartarius , and G. Wunner PTsymmetric gain and loss in a rotating Bose–Einstein condensate, Phys. Rev. A 97 (3), 033607 (2018)
https://doi.org/10.1103/PhysRevA.97.033607
81 Y. Zhang , Z. Chen , B. Wu , T. Busch , and V. V. Konotop , Asymmetric loop spectra and unbroken phase protection due to nonlinearities in PT-symmetric periodic potentials, Phys. Rev. Lett. 127 (3), 034101 (2021)
https://doi.org/10.1103/PhysRevLett.127.034101
82 B. Wu and Q. Niu , Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices, Phys. Rev. A 64 (6), 061603 (2001)
https://doi.org/10.1103/PhysRevA.64.061603
83 B. Wu and Q. Niu , Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability, New J. Phys. 5, 104 (2003)
https://doi.org/10.1088/1367-2630/5/1/104
84 A. P. Seyranian and A. A. Mailybaev , Multiparameter Stability Theory with Mechanical Applications, World Scientific, 2003
https://doi.org/10.1142/5305
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed