Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42506   https://doi.org/10.1007/s11467-021-1135-0
  本期目录
Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED
Wei Zhao, Yan Zhang, Zhihai Wang()
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
 全文: PDF(769 KB)  
Abstract

The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. We investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected between the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the Autler–Townes splitting is dramatically modulated by the giant atom, in which the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.

Key wordsgiant atom    single-photon scattering    quantum interference    Autler–Townes splitting
收稿日期: 2021-09-28      出版日期: 2022-01-13
Corresponding Author(s): Zhihai Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42506.
Wei Zhao, Yan Zhang, Zhihai Wang. Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED. Front. Phys. , 2022, 17(4): 42506.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1135-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42506
1 X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719. 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
2 C. J. Zhu, K. Hou, Y. P. Yang, and L. Deng, Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction, Photon. Res. 9(7). 1264 (2021)
https://doi.org/10.1364/PRJ.421234
3 D. Roy, C. M. Wilson, and O. Firstenberg, Strongly interacting photons in one-dimensional continuum, Rev. Mod. Phys. 89(2). 021001 (2017)
https://doi.org/10.1103/RevModPhys.89.021001
4 L. J. Yu, C. Z. Yuan, R. D. Qi, Y. D. Huang, and W. Zhang, Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources, Photon. Res. 8(3). 235 (2020)
https://doi.org/10.1364/PRJ.376805
5 G. Z. Song, E. Munro, W. Nie, F. G. Deng, G. J. Yang, and L. C. Kwek, Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide, Phys. Rev. A 96(4). 043872 (2017)
https://doi.org/10.1103/PhysRevA.96.043872
6 G. Z. Song, E. Munro, W. Nie, L. C. Kwek, F. G. Deng, and G. L. Long, Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98(2). 023814 (2018)
https://doi.org/10.1103/PhysRevA.98.023814
7 G. Z. Song, L. C. Kwek, F. G. Deng, and G. L. Long, Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal, Phys. Rev. A 99(4). 043830 (2019)
https://doi.org/10.1103/PhysRevA.99.043830
8 I. Iorsh, A. Poshakinskiy, and A. Poddubny, Waveguide quantum optomechanics: Parity–time phase transitions in ultrastrong coupling regime, Phys. Rev. Lett. 125(18). 183601 (2020)
https://doi.org/10.1103/PhysRevLett.125.183601
9 H. Zheng, D. J. Gauthier, and H. U. Baranger, Waveguide QED. Mny-body bound-state effects in coherent and Fock-state scattering from a two-level system, Phys. Rev. A 82(6). 063816 (2010)
https://doi.org/10.1103/PhysRevA.82.063816
10 C. J. Yang, J. H. An, and H. Q. Lin, Signatures of quantized coupling between quantum emitters and localized surface plasmons, Phys. Rev. Researc. 1(2). 023027 (2019)
https://doi.org/10.1103/PhysRevResearch.1.023027
11 T. Shi, Y. H. Wu, A. González-Tudela, and J. I. Cirac, Bound states in Boson impurity models, Phys. Rev. X 6(2). 021027 (2016)
https://doi.org/10.1103/PhysRevX.6.021027
12 G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atomfield dressed states in slow-light waveguide QED. Pys. Rev. A 93(3). 033833 (2016)
https://doi.org/10.1103/PhysRevA.93.033833
13 E. Sánchez-Burillo, D. Zueco, L. Martín-Moreno, and J. J. García-Ripoll, Dynamical signatures of bound states in waveguide QED. Pys. Rev. A 96(2). 023831 (2017)
https://doi.org/10.1103/PhysRevA.96.023831
14 P. T. Fong, and C. K. Law, Bound state in the continuum by spatially separated ensembles of atoms in a coupledcavity array, Phys. Rev. A 96(2). 023842 (2017)
https://doi.org/10.1103/PhysRevA.96.023842
15 G. Calajó, Y. L. L. Fang, H. U. Baranger, and F. Ciccarello, Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback, Phys. Rev. Lett. 122(7). 073601 (2019)
https://doi.org/10.1103/PhysRevLett.122.073601
16 Q. J. Tong, J. H. An, H. G. Luo, and C. H. Oh, Quantum phase transition in the delocalized regime of the spin- Boson model, Phys. Rev. B 84(17). 174301 (2011)
https://doi.org/10.1103/PhysRevB.84.174301
17 M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1). 011016 (2017)
https://doi.org/10.1103/PhysRevX.7.011016
18 L. Qiao, Y. J. Song, and C. P. Sun, Quantum phase transition and interference trapping of populations in a coupledresonator waveguide, Phys. Rev. A 100(1). 013825 (2019)
https://doi.org/10.1103/PhysRevA.100.013825
19 J. T. Shen, and S. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett. 95(21). 213001 (2005)
https://doi.org/10.1103/PhysRevLett.95.213001
20 D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nat. Phys. 3(11). 807 (2007)
https://doi.org/10.1038/nphys708
21 L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101(10). 100501 (2008)
https://doi.org/10.1103/PhysRevLett.101.100501
22 M. Ringel, M. Pletyukhov, and V. Gritsev, Topologically protected strongly correlated states of photons, New J. Pys. 16(11). 113030 (2014)
https://doi.org/10.1088/1367-2630/16/11/113030
23 V. Yannopapas, Dirac points, topological edge modes and nonreciprocal transmission in one-dimensional metamaterial-based coupled-cavity arrays, Int. J. Md. Phys. B 28(02). 1441006 (2014)
https://doi.org/10.1142/S0217979214410069
24 C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, and A. Gonzalez-Tudela, Nonreciprocal few-photon routing schemes based on chiral waveguide–emitter couplings, Phys. Rev. A 94(6). 063817 (2016)
https://doi.org/10.1103/PhysRevA.94.063817
25 I. M. Mirza, and J. C. Schotland, Multiqubit entanglement in bidirectional-chiral-waveguide QED. Pys. Rev. A 94(1). 012302 (2016)
https://doi.org/10.1103/PhysRevA.94.012302
26 S. Mahmoodian, G. Calajó, D. E. Chang, K. Hammerer, and A. S. Sørensen, Dynamics of many-body photon bound states in chiral waveguide QED. Pys. Rev. X 10(3). 031011 (2020)
https://doi.org/10.1103/PhysRevX.10.031011
27 M. Bello, G. Platero, J. I. Cirac, and A. González-Tudela, Unconventional quantum optics in topological waveguide QED. Si. Adv. 5(7), eaaw0279 (2019)
https://doi.org/10.1126/sciadv.aaw0297
28 P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50(24). 1903 (1983)
https://doi.org/10.1103/PhysRevLett.50.1903
29 D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75(1). 281 (2003)
https://doi.org/10.1103/RevModPhys.75.281
30 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a super-conducting qubit using circuit quantum electrodynamics, Nature 431(7005). 162 (2004)
https://doi.org/10.1038/nature02851
31 R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, Trapped atoms in cavity QED. Cupling quantized light and matter, J. Pys. At. Mol. Opt. Phys. 38(9), S551 (2005)
https://doi.org/10.1088/0953-4075/38/9/007
32 S. Haroche, Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys. 85(3). 1083 (2013)
https://doi.org/10.1103/RevModPhys.85.1083
33 D. Walls and G. J. Milburn, Quantum Optics, 2nd Ed., Springer. 2018
34 S. Datta, Surface Acoustic Wave Devices, Prentice-Hall, Englewood Cliffs, NJ, 1986
35 D. Morgan, Surface Acoustic Wave Filters, 2nd Ed., Academic, Amsterdam, 2007
36 R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, Circuit quantum acoustodynamics with surface acoustic waves, Nat. Commun. 8(1). 975 (2017)
https://doi.org/10.1038/s41467-017-01063-9
37 M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, Propagating phonons coupled to an artificial atom, Scienc. 346(6206). 207 (2014)
https://doi.org/10.1126/science.1257219
38 B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Kantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Waveguide quantum electrodynamics with superconducting artificial giant atoms, Nature 583(7818). 775 (2020)
https://doi.org/10.1038/s41586-020-2529-9
39 A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. S. Chang, A. F. Kockum, and C. M. Wilson, Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics, Phys. Rev. A 103(2). 023710 (2021)
https://doi.org/10.1103/PhysRevA.103.023710
40 A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineering and harnessing giant atoms in high-dimensional baths: A proposal for implementation with cold atoms, Phys. Rev. Lett. 122. 203603 (2019)
https://doi.org/10.1103/PhysRevLett.122.203603
41 A. Frisk Kockum, P. Delsing, and G. Johansson, Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A 90(1). 013837 (2014)
https://doi.org/10.1103/PhysRevA.90.013837
42 L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Giant acoustic atom: A single quantum system with a deterministic time delay, Phys. Rev. A 95(5). 053821 (2017)
https://doi.org/10.1103/PhysRevA.95.053821
43 G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, Non-exponential decay of a giant artificial atom, Nat. Phys. 15(11). 1123 (2019)
https://doi.org/10.1038/s41567-019-0605-6
44 S. Guo, Y. Wang, T. Purdy, and J. Taylor, Beyond spontaneous emission: Giant atom bounded in the continuum, Phys. Rev. A 102(3). 033706 (2020)
https://doi.org/10.1103/PhysRevA.102.033706
45 L. Guo, A. F. Kockum, F. Marquardt, and G. Johansson, Oscillating bound states for a giant atom, Phys. Rev. Researc 2(4). 043014 (2020)
https://doi.org/10.1103/PhysRevResearch.2.043014
46 X. Wang, T. Liu, A. F. Kockum, H. R. Li, and F. Nori, Tunable chiral bound states with giant atoms, Phys. Rev. Lett. 126(4). 043602 (2021)
https://doi.org/10.1103/PhysRevLett.126.043602
47 A. F. Kockum, G. Johansson, and F. Nori, Decoherencefree interaction between giant atoms in waveguide quantum electrodynamics, Phys. Rev. Lett. 120(14). 140404 (2018)
https://doi.org/10.1103/PhysRevLett.120.140404
48 A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Researc. 2(4). 043184 (2020)
https://doi.org/10.1103/PhysRevResearch.2.043184
49 A. F. Kockum, in: International Symposium on Mathematics, Quantum Theory, and Cryptography, Springer Singapore, Singapore, 2021, p.125 [also see arXiv. 1912.13012 (2019)]
50 H. J. Kimble, The quantum internet, Nature 453(7198). 1023 (2008)
https://doi.org/10.1038/nature07127
51 S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, An elementary quantum network of single atoms in optical cavities, Nature 484(7393). 195 (2012)
https://doi.org/10.1038/nature11023
52 P. Ldahl, Quantum-dot based photonic quantum networks, Quantum Sci. Technol. 3(1). 013001 (2018)
https://doi.org/10.1088/2058-9565/aa91bb
53 J. T. Shen and S. Fan, Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom, Phys. Rev. A 79(2). 023837 (2009)
https://doi.org/10.1103/PhysRevA.79.023837
54 P. Longo, P. Schmitteckert, and K. Busch, Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping, Phys. Rev. Lett. 104(2). 023602 (2010)
https://doi.org/10.1103/PhysRevLett.104.023602
55 W. B. Yan, J. F. Huang, and H. Fan, Tunable singlephoton frequency conversion in a Sagnac interferometer, Sci. Rep. 3(1). 3555 (2013)
https://doi.org/10.1038/srep03555
56 Z. H. Wang, L. Zhou, Y. Li, and C. P. Sun, Controllable single-photon frequency converter via a one-dimensional waveguide, Phys. Rev. A 89(5). 053813 (2014)
https://doi.org/10.1103/PhysRevA.89.053813
57 W. Z. Jia, Y. W. Wang, and Y. X. Liu, Efficient singlephoton frequency conversion in the microwave domain using superconducting quantum circuits, Phys. Rev. A 96(5). 053832 (2017)
https://doi.org/10.1103/PhysRevA.96.053832
58 A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nkamura, and J. S. Tsai, Electromagnetically induced transparency on a single artificial atom, Phys. Rev. Lett. 104(19). 193601 (2010)
https://doi.org/10.1103/PhysRevLett.104.193601
59 P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively discerning Autler–Townes splitting from electromagnetically induced transparency, Phys. Rev. Lett. 107(16). 163604 (2011)
https://doi.org/10.1103/PhysRevLett.107.163604
60 X. Gu, S. N. Huai, F. Nori, and Y. X. Liu, Polariton states in circuit QED for electromagnetically induced transparency, Phys. Rev. A 93(6). 063827 (2016)
https://doi.org/10.1103/PhysRevA.93.063827
61 X. Wang, H. R. Li, D. X. Chen, W. X. Liu, and F. L. Li, Tunable electromagnetically induced transparency in a composite superconducting system, Opt. Commun. 366. 321 (2016)
https://doi.org/10.1016/j.optcom.2016.01.024
62 J. Long, H. S. Ku, X. Wu, X. Gu, R. E. Lake, M. Bal, Y. X. Liu, and D. P. Pappas, Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states, Phys. Rev. Lett. 120(8). 083602 (2018)
https://doi.org/10.1103/PhysRevLett.120.083602
63 I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon, Scienc. 345(6199). 903 (2014)
https://doi.org/10.1126/science.1254699
64 K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J. S. Tsai, T. Yamamoto, and Y. Nakamura, Single microwavephoton detector using an artificial Λ-type three-level system, Nat. Commun. 7(1). 12303 (2016)
https://doi.org/10.1038/ncomms12303
65 F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1). 44 (2017)
https://doi.org/10.1038/nphys3906
66 A. J. Keller, P. B. Dieterle, M. Fang, B. Berger, J. M. Fink, and O. Painter, Al transmon qubits on silicon-on-insulator for quantum device integration, Appl. Phys. Lett. 111(4). 042603 (2017)
https://doi.org/10.1063/1.4994661
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed