Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 43501   https://doi.org/10.1007/s11467-021-1136-z
  本期目录
Transport features of topological corner states in honeycomb lattice with multihollow structure
Kai-Tong Wang1,2, Fuming Xu2(), Bin Wang2, Yunjin Yu2, Yadong Wei2
1. School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
 全文: PDF(1177 KB)  
Abstract

Higher-order topological phase in 2-dimensional (2D) systems is characterized by in-gap corner states, which are hard to detect and utilize. We numerically investigate transport properties of topological corner states in 2D honeycomb lattice, where the second-order topological phase is induced by an in-plane Zeeman field in the conventional Kane–Mele model. Through engineering multihollow structures with appropriate boundaries in honeycomb lattice, multiple corner states emerge, which greatly increases the probability to observe them. A typical two-probe setup is built to study the transport features of a diamond-shaped system with multihollow structures. Numerical results reveal the existence of global resonant states in bulk insulator, which corresponds to the resonant tunneling of multiple corner states and occupies the entire scattering region. Furthermore, based on the well separated energy levels of multiple corner states, a single-electron source is constructed.

Key wordssecond-order topological insulator    Kane–Mele model    global resonant state    single-electron source
收稿日期: 2021-11-14      出版日期: 2021-12-16
Corresponding Author(s): Kai-Tong Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 43501.
Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei. Transport features of topological corner states in honeycomb lattice with multihollow structure. Front. Phys. , 2022, 17(4): 43501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1136-z
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/43501
1 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
2 Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys.79(6), 066501 (2016)
https://doi.org/10.1088/0034-4885/79/6/066501
3 J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys.14(4), 43403 (2019)
https://doi.org/10.1007/s11467-019-0907-2
4 Q. Niu, Advances on topological materials, Front. Phys.15(4), 43601 (2020)
https://doi.org/10.1007/s11467-020-0979-z
5 B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and Y. Chen, Higher-order band topology, Nat. Rev. Phys.3(7), 520 (2021)
https://doi.org/10.1038/s42254-021-00323-4
6 W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science357(6346), 61 (2017)
https://doi.org/10.1126/science.aah6442
7 J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett.119(24), 246401 (2017)
https://doi.org/10.1103/PhysRevLett.119.246401
8 F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv.4(6), eaat0346 (2018)
https://doi.org/10.1126/sciadv.aat0346
9 R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Impurity-bound states and Green’s function zeros as local signatures of topology, Phys. Rev. B92, 085126 (2015)
https://doi.org/10.1103/PhysRevB.92.085126
10 Y. Volpez, D. Loss, and J. Klinovaja, Second-order topological superconductivity in π-junction Rashba layers, Phys. Rev. Lett122, 126402 (2019)
https://doi.org/10.1103/PhysRevLett.122.126402
11 Y. L. Tao, N. Dai, Y. B. Yang, Q. B. Zeng, and Y. Xu, Hinge solitons in three-dimensional second-order topological insulators, New J. Phys.22(10), 103058 (2020)
https://doi.org/10.1088/1367-2630/abc1f9
12 H. Li and K. Sun, Topological insulators and higher-order topological insulators from gauge-invariant one-dimensional lines, Phys. Rev. B102(8), 085108 (2020)
https://doi.org/10.1103/PhysRevB.102.085108
13 Y. Yang, Z. Jia, Y. Wu, R. C. Xiao, Z. H. Hang, H. Jiang, and X. C. Xie, Gapped topological kink states and topological corner states in honeycomb lattice, Sci. Bull. (Beijing)65(7), 531 (2020)
https://doi.org/10.1016/j.scib.2020.01.024
14 Z. R. Liu, L. H. Hu, C. Z. Chen, B. Zhou, and D. H. Xu, Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators, Phys. Rev. B103(20), L201115 (2021)
https://doi.org/10.1103/PhysRevB.103.L201115
15 X. Cheng, J. Chen, L. Zhang, L. Xiao, and S. Jia, Antichiral edge states and hinge states based on the Haldane model, Phys. Rev. B104(8), L081401 (2021)
https://doi.org/10.1103/PhysRevB.104.L081401
16 B. Liu, L. Xian, H. Mu, G. Zhao, Z. Liu, A. Rubio, and Z. F. Wang, Higher-order band topology in twisted Moiré superlattice, Phys. Rev. Lett.126(6), 066401 (2021)
https://doi.org/10.1103/PhysRevLett.126.066401
17 J. H. Wang, Y. B. Yang, N. Dai, and Y. Xu, Structural-disorder-induced second-order topological insulators in three dimensions, Phys. Rev. Lett.126(20), 206404 (2021)
https://doi.org/10.1103/PhysRevLett.126.206404
18 R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett.124(3), 036803 (2020)
https://doi.org/10.1103/PhysRevLett.124.036803
19 C.-B. Hua, R. Chen, B. Zhou, and D.-H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102, 241102(R) (2020)
https://doi.org/10.1103/PhysRevB.102.241102
20 J. Fan and H. Huang, Topological states in quasicrystals, Front. Phys.17(1), 13203 (2022)
https://doi.org/10.1007/s11467-021-1100-y
21 Y. B. Yang, K. Li, L. M. Duan, and Y. Xu, Higher-order topological Anderson insulators, Phys. Rev. B103(8), 085408 (2021)
https://doi.org/10.1103/PhysRevB.103.085408
22 W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett.126(14), 146802 (2021)
https://doi.org/10.1103/PhysRevLett.126.146802
23 Z. Qiao, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Two-dimensional topological insulator state and topological phase transition in bilayer graphene, Phys. Rev. Lett.107(25), 256801 (2011)
https://doi.org/10.1103/PhysRevLett.107.256801
24 D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett.108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
25 J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys.10(3), 106801 (2015)
https://doi.org/10.1007/s11467-015-0459-z
26 F. Xu, Z. Yu, Y. Ren, B. Wang, Y. Wei, and Z. Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling, New J. Phys.18(11), 113011 (2016)
https://doi.org/10.1088/1367-2630/18/11/113011
27 F. Xu, Z. Yu, Z. Gong, and H. Jin, First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys.12(4), 127306 (2017)
https://doi.org/10.1007/s11467-017-0650-5
28 Y. Ren, J. Zeng, K. Wang, F. Xu, and Z. Qiao, Tunable current partition at zero-line intersection of quantum anomalous Hall topologies, Phys. Rev. B96(15), 155445 (2017)
https://doi.org/10.1103/PhysRevB.96.155445
29 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett.95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
30 Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Spin– orbit gap of graphene: First-principles calculations, Phys. Rev. B75, 041401(R) (2007)
https://doi.org/10.1103/PhysRevB.75.041401
31 C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett.107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
32 C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin–orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B84(19), 195430 (2011)
https://doi.org/10.1103/PhysRevB.84.195430
33 M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett.109(5), 055502 (2012)
https://doi.org/10.1103/PhysRevLett.109.055502
34 H. Pan, Z. Li, C. C. Liu, G. Zhu, Z. Qiao, and Y. Yao, Valley-polarized quantum anomalous Hall effect in silicene, Phys. Rev. Lett.112(10), 106802 (2014)
https://doi.org/10.1103/PhysRevLett.112.106802
35 Y. Xu, B. Yan, H. J. Zhang, J. Wang,, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett.111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
36 Y. Xu, New physics in old material: Topological and superconducting properties of stanene, Front. Phys.15(5), 53202 (2020)
https://doi.org/10.1007/s11467-020-1008-y
37 C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys.15(5), 53201 (2020)
https://doi.org/10.1007/s11467-020-0965-5
38 A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, and N. Marzari, Prediction of a large-gap and switchable Kane–Mele quantum spin Hall insulator, Phys. Rev. Lett.120(11), 117701 (2018)
https://doi.org/10.1103/PhysRevLett.120.117701
39 A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, and N. Marzari, Relative abundance of Z2 topological order in exfoliable two-dimensional insulators, Nano Lett.19(12), 8431 (2019)
https://doi.org/10.1021/acs.nanolett.9b02689
40 Z. Liu, Y. Han, Y. Ren, Q. Niu, and Z. Qiao, Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics, Phys. Rev. B104(12), L121403 (2021)
https://doi.org/10.1103/PhysRevB.104.L121403
41 K. Kandrai, P. Vancsó, G. Kukucska, J. Koltai, G. Baranka, Á. Hoffmann, Á. Pekker, K. Kamara, Z. E. Horváth, A. Vymazalová, L. Tapaszto, and P. Nemes-Incze, Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite, Nano Lett.20(7), 5207 (2020)
https://doi.org/10.1021/acs.nanolett.0c01499
42 Y. Ren, Z. Qiao, and Q. Niu, Engineering corner states from two-dimensional topological insulators, Phys. Rev. Lett.124(16), 166804 (2020)
https://doi.org/10.1103/PhysRevLett.124.166804
43 K. T. Wang, Y. Ren, F. Xu, Y. Wei, and J. Wang, Transport induced dimer state from topological corner states, Sci. China Phys. Mech. Astron.64(5), 257811 (2021)
https://doi.org/10.1007/s11433-020-1677-9
44 M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys.14(5), 1205 (1984)
https://doi.org/10.1088/0305-4608/14/5/016
45 M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F Met. Phys.15(4), 851 (1985)
https://doi.org/10.1088/0305-4608/15/4/009
46 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1995
https://doi.org/10.1017/CBO9780511805776
47 J. Wang and H. Guo, Relation between nonequilibrium Green’s function and Lippmann–Schwinger formalism in the firstprinciples quantum transport theory, Phys. Rev. B79(4), 045119 (2009)
https://doi.org/10.1103/PhysRevB.79.045119
48 V. Gasparian, T. Christen, and M. Büttiker, Partial densities of states, scattering matrices, and Green’s functions, Phys. Rev. A54(5), 4022 (1996)
https://doi.org/10.1103/PhysRevA.54.4022
49 T. Gramespacher and M. Büttiker, Nanoscopic tunneling contacts on mesoscopic multiprobe conductors, Phys. Rev. B56(20), 13026 (1997)
https://doi.org/10.1103/PhysRevB.56.13026
50 O. Ly, R. A. Jalabert, S. Tomsovic, and D. Weinmann, Partial local density of states from scanning gate microscopy, Phys. Rev. B96(12), 125439 (2017)
https://doi.org/10.1103/PhysRevB.96.125439
51 Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, Graphene at the edge: Stability and dynamics, Science323(5922), 1705 (2009)
https://doi.org/10.1126/science.1166999
52 O. V. Yazyev and S. G. Louie, Electronic transport in polycrystalline graphene, Nat. Mater.9(10), 806 (2010)
https://doi.org/10.1038/nmat2830
53 M. Acik and Y. J. Chabal, Nature of graphene edges: A review, Jpn. J. Appl. Phys.50(7), 070101 (2011)
https://doi.org/10.7567/JJAP.50.070101
54 Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater.23(27), 3061 (2011)
https://doi.org/10.1002/adma.201100633
55 T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys.12(1), 127206 (2017)
https://doi.org/10.1007/s11467-017-0648-z
56 J. B. Pendry, Quasi-extended electron states in strongly disordered systems, J. Phys. Chem.20, 733 (1987)
https://doi.org/10.1088/0022-3719/20/5/009
57 J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
https://doi.org/10.1103/PhysRevLett.94.113903
58 L. Chen and X. Jiang, Characterization of short necklace states in the logarithmic transmission spectra of localized systems, J. Phys.: Condens. Matter25(17), 175901 (2013)
https://doi.org/10.1088/0953-8984/25/17/175901
59 F. Sgrignuoli, G. Mazzamuto, N. Caselli, F. Intonti, F. S. Cataliotti, M. Gurioli, and C. Toninelli, Necklace state hallmark in disordered 2D photonic systems, ACS Photonics2(11), 1636 (2015)
https://doi.org/10.1021/acsphotonics.5b00422
60 M. Balasubrahmaniyam, S. Mondal, and S. Mujumdar, Necklace-state-mediated anomalous enhancement of transport in Anderson-localized non-Hermitian hybrid systems, Phys. Rev. Lett.124(12), 123901 (2020)
https://doi.org/10.1103/PhysRevLett.124.123901
61 F. Xu and J. Wang, Statistics of Wigner delay time in Anderson disordered systems, Phys. Rev. B84(2), 024205 (2011)
https://doi.org/10.1103/PhysRevB.84.024205
62 F. Xu and J. Wang, Statistical properties of electrochemical capacitance in disordered mesoscopic capacitors, Phys. Rev. B89(24), 245430 (2014)
https://doi.org/10.1103/PhysRevB.89.245430
63 C. Bäuerle, D. C. Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S. Takada, and X. Waintal, Coherent control of single electrons: A review of current progress, Rep. Prog. Phys.81(5), 056503 (2018)
https://doi.org/10.1088/1361-6633/aaa98a
64 Q. Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett.64(15), 1812 (1990)
https://doi.org/10.1103/PhysRevLett.64.1812
65 M. Moskalets, G. Haack, and M. Büttiker, Single-electron source: Adiabatic versus nonadiabatic emission, Phys. Rev. B Condens. Matter Mater. Phys.87(12), 125429 (2013)
https://doi.org/10.1103/PhysRevB.87.125429
66 W. Y. Deng, K. J. Zhong, R. Zhu, and W. J. Deng, Anharmonic effect of adiabatic quantum pumping, Front. Phys.9(2), 164 (2014)
https://doi.org/10.1007/s11467-013-0394-9
67 Z. Wang, L. Wang, J. Chen, C. Wang, and J. Ren, Geometric heat pump: Controlling thermal transport with time-dependent modulations, Front. Phys.17(1), 13201 (2022)
https://doi.org/10.1007/s11467-021-1095-4
68 F. Xu, Y. Xing, and J. Wang, Numerical study of parametric pumping current in mesoscopic systems in the presence of a magnetic field, Phys. Rev. B84(24), 245323 (2011)
https://doi.org/10.1103/PhysRevB.84.245323
69 G. Yamahata, S. Ryu, N. Johnson, H. S. Sim, A. Fujiwara, and M. Kataoka, Picosecond coherent electron motion in a silicon single-electron source, Nat. Nanotechnol.14(11), 1019 (2019)
https://doi.org/10.1038/s41565-019-0563-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed