Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 43503   https://doi.org/10.1007/s11467-021-1143-0
  本期目录
Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene
Lu Wen1, Yijun Liu2, Guoyu Luo1, Xinyu Lv1, Kaiyuan Wang2, Wang Zhu2, Lei Wang2, Zhiqiang Li1()
1. College of Physics, Sichuan University, Chengdu 610064, China
2. National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
 全文: PDF(736 KB)  
Abstract

We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene (TBG) at various twist angles near the magic angle using two different models. The spectrum at low Fermi energy is characterized by a series of peaks that are almost at the same energies as the peaks in the far-field optical conductivity of TBG. When the Fermi energy is near a van Hove singularity, an additional strong peak appears at finite energy in the near-field spectrum, which has no counterpart in the optical conductivity. Based on a detailed calculation of the plasmon dispersion, we show that these spectroscopic features are associated with interband and intraband plasmons, which can provide critical information about the local band structure and plasmonic excitations in TBG. The near-field peaks evolve systematically with the twist angle, so they can serve as fingerprints for identifying the spatial dependent twist angle in TBG samples. Our findings pave the way for future experimental studies of the novel optical properties of TBG in the nanoscale.

Key wordstwisted bilayer graphene    SNOM    broadband near-field optical spectrum    optical conductivity    magic angle
收稿日期: 2021-11-04      出版日期: 2022-03-28
Corresponding Author(s): Zhiqiang Li   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 43503.
Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene. Front. Phys. , 2022, 17(4): 43503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1143-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/43503
1 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
https://doi.org/10.1038/nature26154
2 Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, and E. Y. Andrei, Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene, Nature 573(7772), 91 (2019)
https://doi.org/10.1038/s41586-019-1460-4
3 A. Kerelsky, L. J. Mc Gilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Maximized electron interactions at the magic angle in twisted bilayer graphene, Nature 572(7767), 95 (2019)
https://doi.org/10.1038/s41586-019-1431-9
4 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
https://doi.org/10.1038/nature26160
5 M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
https://doi.org/10.1126/science.aav1910
6 X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019)
https://doi.org/10.1038/s41586-019-1695-0
7 Y. Xie, B. Lian, B. Jäck, X. Liu, C. L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene, Nature 572(7767), 101 (2019)
https://doi.org/10.1038/s41586-019-1422-x
8 M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moire heterostructure, Science 367(6480), 900 (2020)
https://doi.org/10.1126/science.aay5533
9 A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene, Science 365(6453), 605 (2019)
https://doi.org/10.1126/science.aaw3780
10 R. Bistritzer and A. H. MacDonald, Moire bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA 108(30), 12233 (2011)
https://doi.org/10.1073/pnas.1108174108
11 E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B 82(12), 121407 (2010)
https://doi.org/10.1103/PhysRevB.82.121407
12 H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S. H. Sung, R. Hovden, A. W. Tsen, T. Taniguchi, K. Watanabe, G. C. Yi, M. Kim, M. Luskin, E. B. Tadmor, E. Kaxiras, and P. Kim, Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene, Nat. Mater. 18(5), 448 (2019)
https://doi.org/10.1038/s41563-019-0346-z
13 S. Y. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer graphene: Moire with a twist, Nano Lett. 16(9), 5923 (2016)
https://doi.org/10.1021/acs.nanolett.6b02870
14 N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96(7), 075311 (2017)
https://doi.org/10.1103/PhysRevB.96.075311
15 N. Y. Kim, H. Y. Jeong, J. H. Kim, G. Kim, H. S. Shin, and Z. Lee, Evidence of local commensurate state with lattice match of graphene on hexagonal boron nitride, ACS Nano 11(7), 7084 (2017)
https://doi.org/10.1021/acsnano.7b02716
16 M. M. van Wijk, A. Schuring, M. I. Katsnelson, and A. Fasolino, Relaxation of moiré patterns for slightly misaligned identical lattices: Graphene on graphite, 2D Mater. 2, 034010 (2015)
https://doi.org/10.1088/2053-1583/2/3/034010
17 F. Gargiulo and O. V. Yazyev, Structural and electronic transformation in low-angle twisted bilayer graphene, 2D Mater. 5, 015019 (2017)
https://doi.org/10.1088/2053-1583/aa9640
18 X. Chen, D. Hu, R. Mescall, G. You, D. N. Basov, Q. Dai, and M. Liu, Modern scattering-type scanning near-field optical microscopy for advanced material research, Adv. Mater. 31(24), 1804774 (2019)
https://doi.org/10.1002/adma.201804774
19 A. J. Huber, J. Wittborn, and R. Hillenbrand, Infrared spectroscopic near-field mapping of single nanotransistors, Nanotechnology 21(23), 235702 (2010)
https://doi.org/10.1088/0957-4484/21/23/235702
20 G. Dominguez, A. S. Mcleod, Z. Gainsforth, P. Kelly, H. A. Bechtel, F. Keilmann, A. Westphal, M. Thiemens, and D. N. Basov, Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples, Nat. Commun. 5(1), 5445 (2014)
https://doi.org/10.1038/ncomms6445
21 Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. Mc Leod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface, Nano Lett. 11(11), 4701 (2011)
https://doi.org/10.1021/nl202362d
22 S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, Graphene on hexagonal boron nitride as a tunable hyperbolic meta-material, Nat. Nanotechnol. 10(8), 682 (2015)
https://doi.org/10.1038/nnano.2015.131
23 J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy, ACS Nano 5(8), 6494 (2011)
https://doi.org/10.1021/nn2017638
24 Z. Nuño, B. Hessler, B. Heiberg, R. Damato, T. Dunlap, Y. S. Shon, and Y. Abate, Nanoscale near-field infrared spectroscopic imaging of silica-shell/gold-core and pure silica nanoparticles, J. Nanopart. Res. 14(3), 766 (2012)
https://doi.org/10.1007/s11051-012-0766-z
25 I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy, Nat. Commun. 8(1), 14402 (2017)
https://doi.org/10.1038/ncomms14402
26 M. Liu, A. J. Sternbach, M. Wagner, T. V. Slusar, T. Kong, S. L. Bud’ko, S. Kittiwatanakul, M. M. Qazilbash, A. Mc Leod, Z. Fei, E. Abreu, J. Zhang, M. Goldflam, S. Dai, G. X. Ni, J. Lu, H. A. Bechtel, M. C. Martin, M. B. Raschke, R. D. Averitt, S. A. Wolf, H. T. Kim, P. C. Canfield, and D. N. Basov, Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging, Phys. Rev. B 91(24), 245155 (2015)
https://doi.org/10.1103/PhysRevB.91.245155
27 Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photon. 9(8), 515 (2015)
https://doi.org/10.1038/nphoton.2015.123
28 Z. Shi, H. A. Bechtel, S. Berweger, Y. Sun, B. Zeng, C. Jin, H. Chang, M. C. Martin, M. B. Raschke, and F. Wang, Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride, ACS Photon. 2(7), 790 (2015)
https://doi.org/10.1021/acsphotonics.5b00007
29 H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)
https://doi.org/10.1073/pnas.1400502111
30 D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
https://doi.org/10.1103/RevModPhys.86.959
31 A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D. Rodan-Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and E. Zeldov, Mapping the twist-angle disorder and Landau levels in magic-angle graphene, Nature 581(7806), 47 (2020)
https://doi.org/10.1038/s41586-020-2255-3
32 N. P. Kazmierczak, M. Van Winkle, C. Ophus, K. C. Bustillo, S. Carr, H. G. Brown, J. Ciston, T. Taniguchi, K. Watanabe, and D. K. Bediako, Strain fields in twisted bilayer graphene, Nat. Mater. 20(7), 956 (2021)
https://doi.org/10.1038/s41563-021-00973-w
33 L. Wen, Z. Li, and Y. He, Optical conductivity of twisted bilayer graphene near the magic angle, Chin. Phys. B 30(1), 017303 (2021)
https://doi.org/10.1088/1674-1056/abb65d
34 Z. B. Dai, Y. He, and Z. Li, Effects of heterostrain and lattice relaxation on the optical conductivity of twisted bilayer graphene, Phys. Rev. B 104(4), 045403 (2021)
https://doi.org/10.1103/PhysRevB.104.045403
35 P. Moon and M. Koshino, Optical absorption in twisted bilayer graphene, Phys. Rev. B 87(20), 205404 (2013)
https://doi.org/10.1103/PhysRevB.87.205404
36 J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Continuum model of the twisted graphene bilayer, Phys. Rev. B 86(15), 155449 (2012)
https://doi.org/10.1103/PhysRevB.86.155449
37 M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu, Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene, Phys. Rev. X 8(3), 031087 (2018)
https://doi.org/10.1103/PhysRevX.8.031087
38 Z. Bi, N F Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B 100(3), 035448 (2019)
https://doi.org/10.1103/PhysRevB.100.035448
39 T. Stauber, P. San-Jose, and L. Brey, Optical conductivity, Drude weight and plasmons in twisted graphene bilayers, New J. Phys. 15(11), 113050 (2013)
https://doi.org/10.1088/1367-2630/15/11/113050
40 R. Hillenbrand and F. Keilmann, Complex optical constants on a subwavelength scale, Phys. Rev. Lett. 85(14), 3029 (2000)
https://doi.org/10.1103/PhysRevLett.85.3029
41 R. Hillenbrand, B. Knoll, and F. Keilmann, Pure optical contrast in scattering-type scanning near-field microscopy, J. Microsc. 202, 77 (2001)
https://doi.org/10.1046/j.1365-2818.2001.00794.x
42 A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy, Opt. Express 15(14), 8550 (2007)
https://doi.org/10.1364/OE.15.008550
43 B. Hauer, A. Engelhardt, and T. Taubner, Quasianalytical model for scattering infrared near-field microscopy on layered systems, Opt. Express 20(12), 13173 (2012)
https://doi.org/10.1364/OE.20.013173
44 B. Y. Jiang, L. M. Zhang, A. H. Castro Neto, D. N. Basov, and M. M. Fogler, Generalized spectral method for near-field optical microscopy, J. Appl. Phys. 119(5), 054305 (2016)
https://doi.org/10.1063/1.4941343
45 S. T. Chui, X. Chen, M. Liu, Z. Lin, and J. Zi, Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope, Phys. Rev. B 97(8), 081406 (2018)
https://doi.org/10.1103/PhysRevB.97.081406
46 I. V. Lindell and K. I. Nikoskinen, Electrostatic image theory for the dielectric prolate spheroid, J. Electromagn. Waves Appl. 15(8), 1075 (2001)
https://doi.org/10.1163/156939301X00436
47 S. Amarie and F. Keilmann, Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy, Phys. Rev. B 83(4), 045404 (2011)
https://doi.org/10.1103/PhysRevB.83.045404
48 V. P. Gusynin and S. G. Sharapov, Transport of Dirac quasiparticles in graphene: Hall and optical conductivities, Phys. Rev. B 73(24), 245411 (2006)
https://doi.org/10.1103/PhysRevB.73.245411
49 T. Stauber and H. Kohler, Quasi-flat plasmonic bands in twisted bilayer graphene, Nano Lett. 16(11), 6844 (2016)
https://doi.org/10.1021/acs.nanolett.6b02587
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed