Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42507   https://doi.org/10.1007/s11467-021-1147-9
  本期目录
Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways
Yi-Xuan Wu1, Zi-Yan Guan1, Sai Li1, Zheng-Yuan Xue1,2()
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. Guangdong–Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 全文: PDF(1135 KB)  
Abstract

Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing. To achieve these tasks, convention wisdom is to consult the quantum adiabatic evolution, which is time-consuming, and thus is of low fidelity. Here, using the shortcut to adiabaticity technique, we propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways, which can be further designed for high-fidelity quantum tasks with different optimization purpose. Specifically, with a proper dark pathway, QST and ESG between any two qubits can be achieved without decoupling the others, which simplifies experimental demonstrations. Meanwhile, ESG among all qubits can also be realized in a single step. In addition, our scheme can be implemented in many quantum systems, and we illustrate its implementation on superconducting quantum circuits. Therefore, we propose a powerful strategy for selective quantum manipulation, which is promising in cavity coupled quantum systems and could find many convenient applications in quantum information processing.

Key wordsentanglement generation    quantum information processing    cavity QED
收稿日期: 2021-11-09      出版日期: 2022-02-18
Corresponding Author(s): Zheng-Yuan Xue   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42507.
Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways. Front. Phys. , 2022, 17(4): 42507.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1147-9
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42507
1 P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)
https://doi.org/10.1137/S0036144598347011
2 L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80(19), 4329 (1998)
https://doi.org/10.1103/PhysRevLett.80.4329
3 P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79(1), 53 (2007)
https://doi.org/10.1103/RevModPhys.79.53
4 H. J. Kimble, The quantum internet, Nature 453(7198), 1023 (2008)
https://doi.org/10.1038/nature07127
5 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
6 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
7 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
8 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
9 X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
10 J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
https://doi.org/10.1007/s11467-020-0976-2
11 S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
https://doi.org/10.1007/s11467-021-1087-4
12 J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
https://doi.org/10.1103/PhysRevLett.78.3221
13 A. Olaya-Castro, N. F. Johnson, and L. Quiroga, Scheme for on-resonance generation of entanglement in timedependent asymmetric two-qubit-cavity systems, Phys. Rev. A 70(2), 020301 (2004)
https://doi.org/10.1103/PhysRevA.70.020301
14 N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques, Annu. Rev. Phys. Chem. 52(1), 763 (2001)
https://doi.org/10.1146/annurev.physchem.52.1.763
15 K. Bergmann, H. Theuer, and B. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)
https://doi.org/10.1103/RevModPhys.70.1003
16 Z. R. Zhong, L. Chen, J. Q. Sheng, L. T. Shen, and S. B. Zheng, Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system, Front. Phys. 17(1), 12501 (2022)
https://doi.org/10.1007/s11467-021-1092-7
17 M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147 (2012)
https://doi.org/10.1038/nphys2170
18 E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to adiabaticity, Adv. At. Mol. Opt. Phys. 62, 117 (2013)
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
19 Y. Yan, Y. C. Li, A. Kinos, A. Walther, C. Y. Shi, L. Rippe, J. Moser, S. Kröll, and X. Chen, Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency, Opt. Express 27(6), 8267 (2019)
https://doi.org/10.1364/OE.27.008267
20 S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, T. Busch, and J. G. Muga, Fast quasiadiabatic dynamics, Phys. Rev. A 92(4), 043406 (2015)
https://doi.org/10.1103/PhysRevA.92.043406
21 Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Pulse design for multilevel systems by utilizing Lie transforms, Phys. Rev. A 97(3), 033407 (2018)
https://doi.org/10.1103/PhysRevA.97.033407
22 X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
https://doi.org/10.1103/PhysRevLett.105.123003
23 A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up adiabatic quantum state transfer by using dressed states, Phys. Rev. Lett. 116(23), 230503 (2016)
https://doi.org/10.1103/PhysRevLett.116.230503
24 B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nat. Phys. 13(4), 330 (2017)
https://doi.org/10.1038/nphys3967
25 Y. C. Li, D. Martínez-Cercós, S. Martínez-Garaot, X. Chen, and J. G. Muga, Hamiltonian design to prepare arbitrary states of four-level systems, Phys. Rev. A 97(1), 013830 (2018)
https://doi.org/10.1103/PhysRevA.97.013830
26 P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Floquet-engineering counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett. 123(9), 090602 (2019)
https://doi.org/10.1103/PhysRevLett.123.090602
27 R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453(7198), 1008 (2008)
https://doi.org/10.1038/nature07125
28 C. Monroe and J. Kim, Scaling the ion trap quantum processor, Science 339(6124), 1164 (2013)
https://doi.org/10.1126/science.1231298
29 C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, The atom-cavity microscope: Single atoms bound in orbit by single photons, Science 287(5457), 1447 (2000)
https://doi.org/10.1126/science.287.5457.1447
30 R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451(7179), 664 (2008)
https://doi.org/10.1038/451664a
31 M. Tavis and F. W. Cummings, Exact solution for an N-molecule — radiation-field Hamiltonian, Phys. Rev. 170(2), 379 (1968)
https://doi.org/10.1103/PhysRev.170.379
32 P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J. C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Deterministic quantum state transfer and remote entanglement using microwave photons, Nature 558(7709), 264 (2018)
https://doi.org/10.1038/s41586-018-0195-y
33 C. J. Axline, L. D. Burkhart, W. Pfaff, M. Z. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Ondemand quantum state transfer and entanglement between remote microwave cavity memories, Nat. Phys. 14(7), 705 (2018)
https://doi.org/10.1038/s41567-018-0115-y
34 M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’ Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Implementing the quantum von neumann architecture with superconducting circuits, Science 334(6052), 61 (2011)
https://doi.org/10.1126/science.1208517
35 M. L. Peng, and H. Fan, Achieving the Heisenberg limit under general Markovian noise using quantum error correction without ancilla, Quantum Inform. Process. 19(8), 266 (2020)
https://doi.org/10.1007/s11128-020-02749-8
36 B. J. Liu and M. H. Yung, Coherent control with userdefined passage, Quantum Sci. Technol. 6(2), 025002 (2021)
https://doi.org/10.1088/2058-9565/abd5ca
37 N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)
https://doi.org/10.1016/j.jmr.2004.11.004
38 J. Zhou, S. Li, T. Chen, and Z. Y. Xue, Fast hybrid quantum state transfer and entanglement generation via no transition passage, Ann. Phys. (Berlin) 531(4), 1800402 (2019)
https://doi.org/10.1002/andp.201800402
39 M. Yun, F. Q. Guo, M. Li, L. L. Yan, M. Feng, Y. X. Li, and S. L. Su, Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29(6), 8737 (2021)
https://doi.org/10.1364/OE.418626
40 M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
https://doi.org/10.1126/science.1231930
41 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
42 X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
43 G. Wendin, Quantum information processing with superconducting circuits: A review, Rep. Prog. Phys. 80(10), 106001 (2017)
https://doi.org/10.1088/1361-6633/aa7e1a
44 X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054009
45 J. Chu, D. Y. Li, X. P. Yang, S. Q. Song, Z. K. Han, Z. Yang, Y. Q. Dong, W. Zheng, Z. M. Wang, X. M. Yu, D. Lan, X. S. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)
https://doi.org/10.1103/PhysRevApplied.13.064012
46 Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)
https://doi.org/10.1103/PhysRevA.92.022320
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed