Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42508   https://doi.org/10.1007/s11467-022-1153-6
  本期目录
Electromagnetically induced moiré optical lattices in a coherent atomic gas
Zhiming Chen1,2,3, Xiuye Liu1,4, Jianhua Zeng1,4()
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
2. School of Science, East China University of Technology, Nanchang 330013, China
3. Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(587 KB)  
Abstract

Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.

Key wordselectromagnetically induced transparency    moiré optical lattices    extremely flat bands    light propagation    coherent atomic gas
收稿日期: 2021-11-21      出版日期: 2022-03-03
Corresponding Author(s): Jianhua Zeng   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42508.
Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys. , 2022, 17(4): 42508.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1153-6
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42508
1 Y. S. Kivshar and G. P. Agrawal , Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic Press, 2003
2 J. D. Joannopoulos , S. G. Johnson , J. N. Winn , and R. D. Meade , Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton: Princeton University Press, 2011
3 O. Morsch and M. Oberthaler , Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (1), 179 (2006)
https://doi.org/10.1103/RevModPhys.78.179
4 I. L. Garanovich , S. Longhi , A. A. Sukhorukov , and Y. S. Kivshar , Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518 (1-2), 1 (2012)
https://doi.org/10.1016/j.physrep.2012.03.005
5 Y. V. Kartashov , G. E. Astrakharchik , B. A. Malomed , and L. Torner , Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1 (3), 185 (2019)
https://doi.org/10.1038/s42254-019-0025-7
6 L. Zeng and J. Zeng , Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices, Adv. Photonics 1 (4), 046004 (2019)
https://doi.org/10.1117/1.AP.1.4.046004
7 L. Zeng and J. Zeng , Preventing critical collapse of higherorder solitons by tailoring unconventional optical diffraction and nonlinearities, Commun. Phys. 3 (1), 26 (2020)
https://doi.org/10.1038/s42005-020-0291-9
8 J. Shi and J. Zeng , Self-trapped spatially localized states in combined linear-nonlinear periodic potentials, Front. Phys. 15 (1), 12602 (2020)
https://doi.org/10.1007/s11467-019-0930-3
9 Y. Y. Zheng , S. T. Chen , Z. P. Huang , S. X. Dai , B. Liu , Y. Y. Li , and S. R. Wang , Quantum droplets in two-dimensional optical lattices, Front. Phys. 16 (2), 22501 (2021)
https://doi.org/10.1007/s11467-020-1011-3
10 J. Li and J. Zeng , Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice, Phys. Rev. A 103 (1), 013320 (2021)
https://doi.org/10.1103/PhysRevA.103.013320
11 J. Chen and J. Zeng , Dark matter-wave gap solitons of Bose–Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities, Chaos Solitons Fractals 150, 111149 (2021)
https://doi.org/10.1016/j.chaos.2021.111149
12 Y. Zhang , Z. Wu , M. R. Belić , H. Zheng , Z. Wang , M. Xiao , and Y. Zhang , Photonic floquet topological insulators in atomic ensembles, Laser Photon. Rev. 9 (3), 331 (2015)
https://doi.org/10.1002/lpor.201400428
13 F. Wen , H. Ye , X. Zhang , W. Wang , S. Li , H. Wang , Y. Zhang , and C. W. Qiu , Optically induced atomic lattice with tunable near-field and far-field diffraction patterns, Photon. Res. 5 (6), 676 (2017)
https://doi.org/10.1364/PRJ.5.000676
14 F. Wen , X. Zhang , H. Ye , W. Wang , H. Wang , Y. Zhang , Z. Dai , and C. W. Qiu , Efficient and tunable photo-induced honeycomb lattice in an atomic ensemble, Laser Photon. Rev. 12 (9), 1800050 (2018)
https://doi.org/10.1002/lpor.201800050
15 L. Zhao , Electromagnetically induced polarization grating, Sci. Rep. 8 (1), 3073 (2018)
https://doi.org/10.1038/s41598-018-21494-8
16 C. Hang , W. Li , and G. Huang , Nonlinear light diffraction by electromagnetically induced gratings with PT symmetry in a Rydberg atomic gas, Phys. Rev. A 100 (4), 043807 (2019)
https://doi.org/10.1103/PhysRevA.100.043807
17 Z. Zhang , F. Li , G. Malpuech , Y. Zhang , O. Bleu , S. Koniakhin , C. Li , Y. Zhang , M. Xiao , and D. D. Solnyshkov , Particle-like behavior of topological defects in linear wave packets in photonic graphene, Phys. Rev. Lett. 122 (23), 233905 (2019)
https://doi.org/10.1103/PhysRevLett.122.233905
18 J. Yuan , C. Wu , L. Wang , G. Chen , and S. Jia , Observation of diffraction pattern in two-dimensional optically induced atomic lattice, Opt. Lett. 44 (17), 4123 (2019)
https://doi.org/10.1364/OL.44.004123
19 H. Zhang , J. Yuan , S. Dong , C. Wu , and L. Wang , Observation of an electromagnetically induced grating in cold 85Rb atoms, Appl. Sci. (Basel) 10 (17), 5740 (2020)
https://doi.org/10.3390/app10175740
20 Z. Zhang , R. Wang , Y. Zhang , Y. V. Kartashov , F. Li , H. Zhong , H. Guan , K. Gao , F. Li , Y. Zhang , and M. Xiao , Observation of edge solitons in photonic graphene, Nat. Commun. 11 (1), 1902 (2020)
https://doi.org/10.1038/s41467-020-15635-9
21 Z. Zhang , Y. Shen , S. Ning , S. Liang , Y. Feng , C. Li , Y. Zhang , and M. Xiao , Transport of light in a moving photonic lattice via atomic coherence, Opt. Lett. 46 (17), 4096 (2021)
https://doi.org/10.1364/OL.434164
22 S. Ning , J. Lu , S. Liang , Y. Feng , C. Li , Z. Zhang , and Y. Zhang , Talbot effect of an electromagnetically induced square photonic lattice assisted by a spatial light modulator, Opt. Lett. 46 (19), 5035 (2021)
https://doi.org/10.1364/OL.438489
23 Z. Shi and G. Huang , Selection and cloning of periodic optical patterns with a cold Rydberg atomic gas, Opt. Lett. 46 (21), 5344 (2021)
https://doi.org/10.1364/OL.434364
24 M. Fleischhauer , A. Imamoğlu , and J. P. Marangos , Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77 (2), 633 (2005)
https://doi.org/10.1103/RevModPhys.77.633
25 M. Fleischhauer and M. D. Lukin , Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett. 84 (22), 5094 (2000)
https://doi.org/10.1103/PhysRevLett.84.5094
26 C. Liu , Z. Dutton , C. H. Behroozi , and L. V. Hau , Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409 (6819), 490 (2001)
https://doi.org/10.1038/35054017
27 M. D. Lukin and A. Imamoğlu , Controlling photons using electromagnetically induced transparency, Nature 413 (6853), 273 (2001)
https://doi.org/10.1038/35095000
28 A. André and M. D. Lukin , Manipulating light pulses via dynamically controlled photonic band gap, Phys. Rev. Lett. 89 (14), 143602 (2002)
https://doi.org/10.1103/PhysRevLett.89.143602
29 C. Hang , G. Huang , and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110 (8), 083604 (2013)
https://doi.org/10.1103/PhysRevLett.110.083604
30 Z. Chen , Z. Bai , H. Li , C. Hang , and G. Huang , Storage and retrieval of (3+1)-dimensional weak-light bullets and vortices in a coherent atomic gas, Sci. Rep. 5 (1), 8211 (2015)
https://doi.org/10.1038/srep08211
31 D. Xu , Z. Chen , and G. Huang , Ultraslow weak-light solitons and their storage and retrieval in a kagome-structured hollowcore photonic crystal fiber, Opt. Express 25 (16), 19094 (2017)
https://doi.org/10.1364/OE.25.019094
32 K. Zhang , Y. Liang , J. Lin , and H. Li , Controlling the stability of nonlinear optical modes via electromagnetically induced transparency, Phys. Rev. A 97 (2), 023844 (2018)
https://doi.org/10.1103/PhysRevA.97.023844
33 Z. Chen , H. Xie , Q. Li , and G. Huang , Stern–Gerlach deflection of optical Thirring solitons in a coherent atomic system, Phys. Rev. A 100 (1), 013827 (2019)
https://doi.org/10.1103/PhysRevA.100.013827
34 Z. Bai , W. Li , and G. Huang , Stable single light bullets and vortices and their active control in cold Rydberg gases, Optica 6 (3), 309 (2019)
https://doi.org/10.1364/OPTICA.6.000309
35 J. Ru , Z. Wu , Y. Zhang , F. Wen , and Y. Gu , Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency, Front. Phys. 15 (5), 52503 (2020)
https://doi.org/10.1007/s11467-020-0984-2
36 J. Tang , Y. Deng , and C. Lee , Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency, Photon. Res. 9 (7), 1226 (2021)
https://doi.org/10.1364/PRJ.419275
37 Z. Chen and J. Zeng , Localized gap modes of coherently trapped atoms in an optical lattice, Opt. Express 29 (3), 3011 (2021)
https://doi.org/10.1364/OE.412554
38 Z. Chen and J. Zeng , Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices, Commun. Nonlinear Sci. Numer. Simul. 102, 105911 (2021)
https://doi.org/10.1016/j.cnsns.2021.105911
39 P. Wang , Y. Zheng , X. Chen , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , and F. Ye , Localization and delocalization of light in photonic moiré lattices, Nature 577 (7788), 42 (2020)
https://doi.org/10.1038/s41586-019-1851-6
40 Q. Fu , P. Wang , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , and F. Ye , Optical soliton formation controlled by angle twisting in photonic moiré lattices, Nat. Photonics 14 (11), 663 (2020)
https://doi.org/10.1038/s41566-020-0679-9
41 D. A. Steck , Rubidium 87 D Line Data. http://steck.us/alkalidata (revision 2.2.2, 9 July 2021)
42 C. Huang , F. Ye , X. Chen , Y. V. Kartashov , V. V. Konotop , and L. Torner , Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials, Sci. Rep. 6 (1), 32546 (2016)
https://doi.org/10.1038/srep32546
43 X. R. Mao , Z. K. Shao , H. Y. Luan , S. L. Wang , and R. M. Ma , Magic-angle lasers in nanostructured moiré superlattice, Nat. Nanotechnol. 16 (10), 1099 (2021)
https://doi.org/10.1038/s41565-021-00956-7
44 A. González-Tudela and J. I. Cirac , Cold atoms in twistedbilayer optical potentials, Phys. Rev. A 100, 053604 (2019)
https://doi.org/10.1103/PhysRevA.100.053604
45 T. Salamon , A. Celi , R. W. Chhajlany , I. Frérot , Maciej Lewenstein , L. Tarruell , and D. Rakshit , Simulating twistronics without a twist, Phys. Rev. Lett. 125, 030504 (2020)
https://doi.org/10.1103/PhysRevLett.125.030504
46 X.-W. Luo and C. Zhang , Spin-twisted optical lattices: Tunable flat bands and Larkin — Ovchinnikov superfluids, Phys. Rev. Lett. 126, 103201 (2021)
https://doi.org/10.1103/PhysRevLett.126.103201
47 Y. V. Kartashov , F. Ye , V. V. Konotop , and L. Torner , Multifrequency solitons in commensurate-incommensurate photonic moiré lattices. Phys. Rev. Lett. 127 (16), 163902 (2021)
https://doi.org/10.1103/PhysRevLett.127.163902
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed