Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 33506   https://doi.org/10.1007/s11467-022-1158-1
  本期目录
The reservoir learning power across quantum many-body localization transition
Wei Xia1, Jie Zou1, Xingze Qiu1,2(), Xiaopeng Li1,3()
1. State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, China
2. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3. Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China
 全文: PDF(704 KB)  
Abstract

Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey–Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be tested with near-term NISQ quantum devices.

Key wordsquantum reservoir computing    many-body localization    quantum ergodic    edge of quantum ergodicity    optimal learning power
收稿日期: 2022-02-15      出版日期: 2022-03-31
Corresponding Author(s): Xingze Qiu,Xiaopeng Li   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 33506.
Wei Xia, Jie Zou, Xingze Qiu, Xiaopeng Li. The reservoir learning power across quantum many-body localization transition. Front. Phys. , 2022, 17(3): 33506.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1158-1
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/33506
1 F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., Quantum supremacy using a programmable super-conducting processor, Nature 574(7779), 505 (2019)
2 H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum computational advantage using photons, Science 370(6523), 1460 (2020)
https://doi.org/10.1126/science.abe8770
3 J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)
https://doi.org/10.22331/q-2018-08-06-79
4 I. H. Deutsch, Harnessing the power of the second quantum revolution, PRX Quantum 1(2), 020101 (2020)
https://doi.org/10.1103/PRXQuantum.1.020101
5 E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, et al., Quantum simulators: Architectures and opportunities, PRX Quantum 2(1), 017003 (2021)
https://doi.org/10.1103/PRXQuantum.2.017003
6 C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357(6355), 995 (2017)
https://doi.org/10.1126/science.aal3837
7 F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: A review, Rep. Prog. Phys. 82(1), 016001 (2019)
https://doi.org/10.1088/1361-6633/aad5b2
8 J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Integrated photonic quantum technologies, Nat. Photonics 14(5), 273 (2020)
https://doi.org/10.1038/s41566-019-0532-1
9 M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)
https://doi.org/10.1146/annurev-conmatphys-031119-050605
10 F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, Silicon quantum electronics, Rev. Mod. Phys. 85(3), 961 (2013)
https://doi.org/10.1103/RevModPhys.85.961
11 Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman, A. V. Gorshkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S. Lloyd, M. D. Lukin, D. Maslov, P. Maunz, C. Monroe, J. Preskill, M. Roetteler, M. J. Savage, and J. Thompson, Quantum computer systems for scientific discovery, PRX Quantum 2(1), 017001 (2021)
https://doi.org/10.1103/PRXQuantum.2.017001
12 R. Mengoni, D. Ottaviani, and P. Iorio, Breaking RSA security with a low noise D-wave 2000Q quantum annealer: Computational times, limitations and prospects, arXiv: 2005.02268 (2020).
13 P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, Perspectives of quantum annealing: Methods and implementations, Rep. Prog. Phys. 83(5), 054401 (2020)
https://doi.org/10.1088/1361-6633/ab85b8
14 K. Nakajima, Physical reservoir computing — an introductory perspective, Jpn. J. Appl. Phys. 59(6), 060501 (2020)
https://doi.org/10.35848/1347-4065/ab8d4f
15 N. H. Packard, Adaptation Toward the Edge of Chaos, in: Dynamic Patterns in Complex Systems, World Scientific, 1988), pp 293–301
16 C. G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, Physica D 42(1–3), 12 (1990)
https://doi.org/10.1016/0167-2789(90)90064-V
17 N. Bertschinger and T. Natschläger, Real-time computation at the edge of chaos in recurrent neural networks, Neural Comput. 16(7), 1413 (2004)
https://doi.org/10.1162/089976604323057443
18 R. Legenstein and W. Maass, Edge of chaos and prediction of computational performance for neural circuit models, Neural Netw. 20(3), 323 (2007)
https://doi.org/10.1016/j.neunet.2007.04.017
19 M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan, Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction, Phys. Rev. X 10(4), 041037 (2020)
https://doi.org/0.1103/PhysRevX.10.041037
20 K. Fujii and K. Nakajima, Harnessing disordered-ensemble quantum dynamics for machine learning, Phys. Rev. Appl. 8(2), 024030 (2017)
https://doi.org/10.1103/PhysRevApplied.8.024030
21 S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H. Liew, Quantum reservoir processing, npj Quantum Inf. 5, 35 (2019)
https://doi.org/10.1038/s41534-019-0149-8
22 J. Chen, H. I. Nurdin, and N. Yamamoto, Temporal information processing on noisy quantum computers, Phys. Rev. Appl. 14(2), 024065 (2020)
https://doi.org/10.1103/PhysRevApplied.14.024065
23 S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H. Liew, Reconstructing quantum states with quantum reservoir networks, IEEE Trans. Neural Netw. Learn. Syst. 32(7), 1 (2020)
https://doi.org/10.1109/TNNLS.2020.3009716
24 J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C. Soriano, and R. Zambrini, Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing, Commun. Phys. 4(1), 53 (2021)
https://doi.org/10.1038/s42005-021-00556-w
25 K. Fujii and K. Nakajima, Quantum reservoir computing: A reservoir approach toward quantum machine learning on near-term quantum devices, arXiv: 2011.04890(2020)
https://doi.org/10.1007/978-981-13-1687-6_18
26 M. Serbyn, Z. Papić, and D. A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111(12), 127201 (2013)
https://doi.org/10.1103/PhysRevLett.111.127201
27 D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology of fully many-body-localized systems, Phys. Rev. B 90(17), 174202 (2014)
https://doi.org/10.1103/PhysRevB.90.174202
28 V. Ros, M. Müller, and A. Scardicchio, Integrals of motion in the many-body localized phase, Nucl. Phys. B 891, 420 (2015)
https://doi.org/10.1016/j.nuclphysb.2014.12.014
29 A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, Constructing local integrals of motion in the many-body localized phase, Phys. Rev. B 91(8), 085425 (2015)
https://doi.org/10.1103/PhysRevB.91.085425
30 D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Manybody localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
https://doi.org/10.1103/RevModPhys.91.021001
31 M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197(4300), 287 (1977)
https://doi.org/10.1126/science.267326
32 R. Martínez-Peña, G. L. Giorgi, J. Nokkala, M. C. Soriano, and R. Zambrini, Dynamical phase transitions in quantum reservoir computing, Phys. Rev. Lett. 127(10), 100502 (2021)
https://doi.org/10.1103/PhysRevLett.127.100502
33 A. O. Maksymov and A. L. Burin, Many-body localization in spin chains with long-range transverse interactions: Scaling of critical disorder with system size, Phys. Rev. B 101(2), 024201 (2020)
https://doi.org/10.1103/PhysRevB.101.024201
34 L. M. K. Vandersypen and I. L. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037 (2005)
https://doi.org/10.1103/RevModPhys.76.1037
35 L. M. Duan and C. Monroe, Quantum networks with trapped ions, Rev. Mod. Phys. 82(2), 1209 (2010)
https://doi.org/10.1103/RevModPhys.82.1209
36 J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, Demonstration of the trapped-ion quantum CCD computer architecture, Nature 592(7853), 209 (2021)
https://doi.org/10.1038/s41586-021-03318-4
37 A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16(2), 132 (2020)
https://doi.org/10.1038/s41567-019-0733-z
38 D. W. Leung, I. L. Chuang, F. Yamaguchi, and Y. Yamamoto, Efficient implementation of coupled logic gates for quantum computation, Phys. Rev. A 61(4), 042310 (2000)
https://doi.org/10.1103/PhysRevA.61.042310
39 J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J. Du, Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator, Phys. Rev. X 7(3), 031011 (2017)
https://doi.org/10.1103/PhysRevX.7.031011
40 J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body localization in a quantum simulator with programmable random disorder, Nat. Phys. 12(10), 907 (2016)
https://doi.org/10.1038/nphys3783
41 J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe, Observation of a discrete time crystal, Nature 543(7644), 217 (2017)
https://doi.org/10.1038/nature21413
42 X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y. C. Liu, M. K. Tey, and L. You, A concise review of Rydberg atom based quantum computation and quantum simulation, Chin. Phys. B 30(2), 020305 (2020)
https://doi.org/10.1088/1674-1056/abd76f
43 M. Morgado and S. Whitlock, Quantum simulation and computing with Rydberg-interacting qubits, AVS Quantum Science 3(2), 023501 (2021)
https://doi.org/10.1116/5.0036562
44 X. Qiu, P. Zoller, and X. Li, Programmable quantum annealing architectures with Ising quantum wires, PRX Quantum 1(2), 020311 (2020)
https://doi.org/10.1103/PRXQuantum.1.020311
45 D. A. Roberts, D. Stanford, and A. Streicher, Operator growth in the SYK model, J. High Energy Phys. 2018(6), 122 (2018)
https://doi.org/10.1007/JHEP06(2018)122
46 X. Li, G. Zhu, M. Han, and X. Wang, Quantum information scrambling through a high-complexity operator mapping, Phys. Rev. A 100(3), 032309 (2019)
https://doi.org/10.1103/PhysRevA.100.032309
47 J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109(1), 017202 (2012)
https://doi.org/10.1103/PhysRevLett.109.017202
48 M. Serbyn, Z. Papić, and D. A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett. 110(26), 260601 (2013)
https://doi.org/10.1103/PhysRevLett.110.260601
49 M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler, Interferometric probes of many-body localization, Phys. Rev. Lett. 113(14), 147204 (2014)
https://doi.org/10.1103/PhysRevLett.113.147204
50 A. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28, 1200 (1969)
51 S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energy Phys. 2014(3), 67 (2014)
https://doi.org/10.1007/JHEP03(2014)067
52 J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016(8), 106 (2016)
https://doi.org/10.1007/JHEP08(2016)106
53 H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science 304(5667), 78 (2004)
https://doi.org/10.1126/science.1091277
54 K. Srinivasan, I. Raja Mohamed, K. Murali, M. Lakshmanan, and S. Sinha, Design of time delayed chaotic circuit with threshold controller, Int. J. Bifurcat. Chaos 21(3), 725 (2011)
https://doi.org/10.1142/S0218127411028751
55 J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, Information processing capacity of dynamical systems, Sci. Rep. 2(1), 514 (2012)
https://doi.org/10.1038/srep00514
56 R. Martínez-Peña, J. Nokkala, G. L. Giorgi, R. Zambrini, and M. C. Soriano, Information processing capacity of spin-based quantum reservoir computing systems, Cognit. Comput. (2020)
https://doi.org/10.1007/s12559-020-09772-y
57 J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C. Soriano, and R. Zambrini, Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing, Commun. Phys. 4(1), 53 (2021)
https://doi.org/10.1038/s42005-021-00556-w
58 J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109(1), 017202 (2012)
https://doi.org/10.1103/PhysRevLett.109.017202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed