Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 31504   https://doi.org/10.1007/s11467-022-1161-6
  本期目录
Understanding the mechanisms of brain functions from the angle of synchronization and complex network
Tianwei Wu1, Xinhua Zhang2, Zonghua Liu1()
1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2. Jinhua Middle School, Shanghai 200333, China
 全文: PDF(6064 KB)  
Abstract

The human brain is the most complicated and fascinated system and executes various important brain functions, but its underlying mechanism is a long-standing problem. In recent years, based on the progress of complex network science, much attention has been paid to this problem and many important results have been achieved, thus it is the time to make a summary to help further studies. For this purpose, we here make a brief but comprehensive review on those results from the aspect of brain networks, i.e., from the angle of synchronization and complex network. First, we briefly discuss the main features of human brain and its cognitive functions through synchronization. Then, we discuss how to construct both the anatomical and functional brain networks, including the pathological brain networks such as epilepsy and Alzheimer’s diseases. Next, we discuss the approaches of studying brain networks. After that, we discuss the current progress of understanding the mechanisms of brain functions, including the aspects of chimera state, remote synchronization, explosive synchronization, intelligence quotient, and remote propagation. Finally, we make a brief discussion on the envision of future study.

Key wordsbrain functions    complex network    synchronization    chimera state    remote synchronization    explosive synchronization    intelligence quotient    remote propagation
收稿日期: 2022-02-14      出版日期: 2022-04-22
Corresponding Author(s): Zonghua Liu   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 31504.
Tianwei Wu, Xinhua Zhang, Zonghua Liu. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys. , 2022, 17(3): 31504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1161-6
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/31504
1 G. Buzsaki, Rhythms of the Brain, Oxford University Press, New York, 2006
2 P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer, New York, 1996
https://doi.org/10.1007/978-1-4757-5426-1
3 L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann, Self-organized criticality model for brain plasticity, Phys. Rev. Lett. 96(2), 028107 (2006)
https://doi.org/10.1103/PhysRevLett.96.028107
4 T. K. Hensch, Critical period regulation, Annu. Rev. Neurosci. 27(1), 549 (2004)
https://doi.org/10.1146/annurev.neuro.27.070203.144327
5 L. F. Abbott and S. B. Nelson, Synaptic plasticity: Taming the beast, Nat. Neurosci. 3(S11), 1178 (2000)
https://doi.org/10.1038/81453
6 D. O. Hebb, The Organization of Behavior, John Wiley, New York, 1949
7 S. J. Cooper, Hebb’s synapse and learning rule: A history and commentary, Neurosci. Biobehav. Rev. 28(8), 851 (2005)
https://doi.org/10.1016/j.neubiorev.2004.09.009
8 K. Bansal, J. O. Garcia, S. H. Tompson, T. Verstynen, J. M. Vettel, and S. F. Muldoon, Cognitive chimera states in human brain networks, Sci. Adv. 5(4), eaau8535 (2019)
https://doi.org/10.1126/sciadv.aau8535
9 P. Fries, A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence, Trends Cogn. Sci. 9(10), 474 (2005)
https://doi.org/10.1016/j.tics.2005.08.011
10 J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron 69(2), 387 (2011)
https://doi.org/10.1016/j.neuron.2010.12.027
11 T. J. Buschman and E. K. Miller, Top-down versus bottomup control of attention in the prefrontal and posterior parietal cortices, Science 315(5820), 1860 (2007)
https://doi.org/10.1126/science.1138071
12 J. Gross, F. Schmitz, I. Schnitzler, K. Kessler, K. Shapiro, B. Hommel, and A. Schnitzler, Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans, Proc. Natl. Acad. Sci. USA 101(35), 13050 (2004)
https://doi.org/10.1073/pnas.0404944101
13 F. Crick and C. Koch, Some reflections on visual awareness, Cold Spring Harb. Symp. Quant. Biol. 55(0), 953 (1990)
https://doi.org/10.1101/SQB.1990.055.01.089
14 M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofecv, Precise long-range synchronization of activity and silence in neoconical neurons during slow-wave sleep, J. Neurosci. 26(21), 5665 (2006)
https://doi.org/10.1523/JNEUROSCI.0279-06.2006
15 L. M. Ward, Synchronous neural oscillations and cognitive processes, Trends Cogn. Sci. 7(12), 553 (2003)
https://doi.org/10.1016/j.tics.2003.10.012
16 E. Bullmore and O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci. 13(5), 336 (2012)
https://doi.org/10.1038/nrn3214
17 K. Bansal, J. D. Medaglia, D. S. Bassett, J. M. Vettel, and S. F. Muldoon, Data-driven brain network models differentiate variability across language tasks, PLoS Comput. Biol. 14(10), e1006487 (2018)
https://doi.org/10.1371/journal.pcbi.1006487
18 P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, J. V. Wedeen, and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS Biol. 6(7), e159 (2008)
https://doi.org/10.1371/journal.pbio.0060159
19 S. B. Eickhoff, B. T. T. Yeo, and S. Genon, Imaging-based parcellations of the human brain, Nat. Rev. Neurosci. 19(11), 672 (2018)
https://doi.org/10.1038/s41583-018-0071-7
20 C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann, Predicting human resting-state functional connectivity from structural connectivity, Proc. Natl. Acad. Sci. USA 106(6), 2035 (2009)
https://doi.org/10.1073/pnas.0811168106
21 S. Huo, C. Tian, M. Zheng, S. Guan, C. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
https://doi.org/10.1093/nsr/nwaa125
22 C. J. Stam, Characterization of anatomical and functional connectivity in the brain: A complex networks perspective, Int. J. Psychophysiol. 77(3), 186 (2010)
https://doi.org/10.1016/j.ijpsycho.2010.06.024
23 O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci. 8(9), 418 (2004)
https://doi.org/10.1016/j.tics.2004.07.008
24 V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, Scale-free brain functional networks, Phys. Rev. Lett. 94(1), 018102 (2005)
https://doi.org/10.1103/PhysRevLett.94.018102
25 D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, Adaptive reconfiguration of fractal smallworld human brain functional networks, Proc. Natl. Acad. Sci. USA 103(51), 19518 (2006)
https://doi.org/10.1073/pnas.0606005103
26 A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: Oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2(10), 704 (2001)
https://doi.org/10.1038/35094565
27 F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, The Brainweb: Phase Synchronization and Large-Scale Integration, Nat. Rev. Neurosci. 2(4), 229 (2001)
https://doi.org/10.1038/35067550
28 K. E. Stephan, C. C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, M. P. Young, and R. Kotter, Computational analysis of functional connectivity between areas of primate cerebral cortex, Philos. Trans. R. Soc. Lond. B 355(1393), 111 (2000)
https://doi.org/10.1098/rstb.2000.0552
29 L. M. A. Bettencourt, G. J. Stephens, M. I. Ham, and G. W. Gross, Functional structure of cortical neuronal networks grown in vitro, Phys. Rev. E 75(2), 021915 (2007)
https://doi.org/10.1103/PhysRevE.75.021915
30 M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks, MAGMA 23(5–6), 409 (2010)
https://doi.org/10.1007/s10334-010-0205-z
31 C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, Small world networks and functional connectivity in Alzheimers disease, Cereb. Cortex 17(1), 92 (2006)
https://doi.org/10.1093/cercor/bhj127
32 M. Chavez, M. Valencia, V. Navarro, V. Latora, and J. Martinerie, Functional modularity of background activities in normal and epileptic brain networks, Phys. Rev. Lett. 104(11), 118701 (2010)
https://doi.org/10.1103/PhysRevLett.104.118701
33 M. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbichler, U. Muller, and E. Bullmore, Functional connectivity and brain networks in schizophrenia, J. Neurosci. 30(28), 9477 (2010)
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
34 K. J. Friston, Functional and effective connectivity in neuroimaging: A synthesis, Hum. Brain Mapp. 2(1–2), 56 (1994)
https://doi.org/10.1002/hbm.460020107
35 S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)
https://doi.org/10.1016/S0370-1573(02)00137-0
36 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, UK, 2001
https://doi.org/10.1017/CBO9780511755743
37 A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
38 J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12(2), 105 (2011)
https://doi.org/10.1038/nrn2979
39 P. Sauseng, W. Klimesch, M. Doppelmayr, S. Hanslmayr, M. Schabus, and W. R. Gruber, Theta coupling in the human electroencephalogram during a working memory task, Neurosci. Lett. 354(2), 123 (2004)
https://doi.org/10.1016/j.neulet.2003.10.002
40 J. Sarnthein, H. Petsche, P. Rappelsberger, G. L. Shaw, and A. von Stein, Synchronization between prefrontal and posterior association cortex during human working memory, Proc. Natl. Acad. Sci. USA 95(12), 7092 (1998)
https://doi.org/10.1073/pnas.95.12.7092
41 N. Axmacher, D. P. Schmitz, T. Wagner, C. E. Elger, and J. Fell, Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory, a combined intracranial EEG and functional magnetic resonance imaging study, J. Neurosci. 28(29), 7304 (2008)
https://doi.org/10.1523/JNEUROSCI.1778-08.2008
42 P. Sauseng, W. Klimesch, K. F. Heise, W. R. Gruber, E. Holz, A. A. Karim, M. Glennon, C. Gerloff, N. Birbaumer, and F. C. Hummel, Brain oscillatory substrates of visual shortterm memory capacity, Curr. Biol. 19(21), 1846 (2009)
https://doi.org/10.1016/j.cub.2009.08.062
43 M. I. Rabinovich, A. N. Simmons, and P. Varona, Dynamical bridge between brain and mind, Trends Cogn. Sci. 19(8), 453 (2015)
https://doi.org/10.1016/j.tics.2015.06.005
44 H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12(1), 1 (1972)
https://doi.org/10.1016/S0006-3495(72)86068-5
45 S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S. Bassett, Stimulation-based control of dynamic brain networks, PLoS Comput. Biol. 12(9), e1005076 (2016)
https://doi.org/10.1371/journal.pcbi.1005076
46 F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biol. Cybern. 83(4), 367 (2000)
https://doi.org/10.1007/s004220000160
47 C. Zhou, L. Zemanova, G. Zamora-Lopez, C. C. Hilgetag, and J. Kurths, StructureCfunction relationship in complex brain networks expressed by hierarchical synchronization, New J. Phys. 9(6), 178 (2007)
https://doi.org/10.1088/1367-2630/9/6/178
48 O. David, L. Harrison, and K. J. Friston, Modelling eventrelated responses in the brain, Neuroimage 25(3), 756 (2005)
https://doi.org/10.1016/j.neuroimage.2004.12.030
49 J. M. Huntenburg, P. L. Bazin, and D. S. Margulies, Large-scale gradients in human cortical organization, Trends Cogn. Neurosci. 22, 21 (2018)
https://doi.org/10.1016/j.tics.2017.11.002
50 T. Ito, K. R. Kulkarni, D. H. Schultz, R. D. Mill, R. H. Chen, L. I. Solomyak, and M. W. Cole, Cognitive task information is transferred between brain regions via resting-state network topology, Nat. Commun. 8(1), 1027 (2017)
https://doi.org/10.1038/s41467-017-01000-w
51 X. G. Wang, Synchronous patterns in complex networks, Sci. Sin. Phys. Mech. & Astron. 50, 010503 (2020)
https://doi.org/10.1360/SSPMA-2019-0131
52 M. L. Kelly, R. A. Peters, R. K. Tisdale, and J. A. Lesku, Unihemispheric sleep in crocodilians? J. Exp. Biol. 218(20), 3175 (2015)
https://doi.org/10.1242/jeb.127605
53 N. C. Rattenborg, S. L. Lima, and C. J. Amlaner, Halfawake to the risk of predation, Nature 397(6718), 397 (1999)
https://doi.org/10.1038/17037
54 N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
https://doi.org/10.1016/S0149-7634(00)00039-7
55 M. Tamaki, J. W. Bang, T. Watanabe, and Y. Sasaki, Night watch in one brain hemisphere during sleep associated with the first-night effect in humans, Curr. Biol. 26(9), 1190 (2016)
https://doi.org/10.1016/j.cub.2016.02.063
56 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
57 M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)
https://doi.org/10.1088/0951-7715/28/3/R67
58 S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Chimera states in neuronal networks: A review, Phys. Life Rev. 28, 100 (2019)
https://doi.org/10.1016/j.plrev.2018.09.003
59 Z. Wang and Z. Liu, Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization, Acta Physica Sinica 69(8), 088902 (2020)
https://doi.org/10.7498/aps.69.20191973
60 Z. Wang and Z. Liu, A brief review of chimera state in empirical brain networks, Front. Physiol. 11, 724 (2020)
https://doi.org/10.3389/fphys.2020.00724
61 R. Ma, J. Wang, and Z. Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
https://doi.org/10.1209/0295-5075/91/40006
62 Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
https://doi.org/10.1103/PhysRevE.89.022914
63 T. Chouzouris, I. Omelchenko, A. Zakharova, J. Hlinka, P. Jiruska, and E. Schöll, Chimera states in brain networks: Empirical neural vs. modular fractal connectivity, Chaos 28(4), 045112 (2018)
https://doi.org/10.1063/1.5009812
64 R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, All together now: Analogies between chimera state collapses and epileptic seizures, Sci. Rep. 6(1), 23000 (2016)
https://doi.org/10.1038/srep23000
65 L. Kang, C. Tian, S. Huo, and Z. Liu, A two-layered brain network model and its chimera state, Sci. Rep. 9(1), 14389 (2019)
https://doi.org/10.1038/s41598-019-50969-5
66 S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
https://doi.org/10.1093/nsr/nwaa125
67 R. Vicente, L. L. Gollo, C. R. Mirasso, I. Fischer, and G. Pipa, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays, Proc. Natl. Acad. Sci. USA 105(44), 17157 (2008)
https://doi.org/10.1073/pnas.0809353105
68 P. R. Roelfsema, A. K. Engel, P. Konig, and W. Singer, Visuomotor integration is associated with zero time lag synchronization among cortical areas, Nature 385(6612), 157 (1997)
https://doi.org/10.1038/385157a0
69 E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, Perception’s shadow: Long-distance synchronization of human brain activity, Nature 397(6718), 430 (1999)
https://doi.org/10.1038/17120
70 V. Vuksanović and P. Hovel, Functional connectivity of distant cortical regions: Role of remote synchronization and symmetry in interactions, Neuroimage 97, 1 (2014)
https://doi.org/10.1016/j.neuroimage.2014.04.039
71 A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)
https://doi.org/10.1103/PhysRevE.85.026208
72 L. Kang, Z. Wang, S. Huo, C. Tian, and Z. Liu, Remote synchronization in human cerebral cortex network with identical oscillators, Nonlinear Dyn. 99(2), 1577 (2020)
https://doi.org/10.1007/s11071-019-05375-x
73 M. A. Kramer and S. S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18(4), 360 (2012)
https://doi.org/10.1177/1073858411422754
74 M. Guye, J. Regis, M. Tamura, F. Wendling, A. Mc Gonigal, P. Chauvel, and F. Bartolomei, The role of corticothalamic coupling in human temporal lobe epilepsy, Brain 129(7), 1917 (2006)
https://doi.org/10.1093/brain/awl151
75 Z. Wang, C. Tian, M. Dhamala, and Z. Liu, A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network, Sci. Rep. 7(1), 561 (2017)
https://doi.org/10.1038/s41598-017-00697-5
76 J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett. 106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
77 I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
https://doi.org/10.1103/PhysRevLett.108.168702
78 P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
https://doi.org/10.1103/PhysRevLett.110.218701
79 X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
https://doi.org/10.1103/PhysRevE.88.010802
80 Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
https://doi.org/10.1103/PhysRevLett.112.114102
81 X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4(1), 5200 (2015)
https://doi.org/10.1038/srep05200
82 X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
83 S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.10.004
84 M. B. Kelz, Y. Sun, J. Chen, Q. Cheng Meng, J. T. Moore, S. C. Veasey, S. Dixon, M. Thornton, H. Funato, and M. Yanagisawa, An essential role for orexins in emergence from general anesthesia, Proc. Natl. Acad. Sci. USA 105(4), 1309 (2008)
https://doi.org/10.1073/pnas.0707146105
85 E. B. Friedman, Y. Sun, J. T. Moore, H. T. Hung, Q. C. Meng, P. Perera, W. J. Joiner, S. A. Thomas, R. G. Eckenhoff, A. Sehgal, and M. B. Kelz, A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: Evidence for neural inertia, PLoS One 5(7), e11903 (2010)
https://doi.org/10.1371/journal.pone.0011903
86 W. J. Joiner, E. B. Friedman, H. T. Hung, K. Koh, M. Sowcik, A. Sehgal, and M. B. Kelz, Genetic and anatomical basis of the barrier separatingwakefulness and anesthetic-induced unresponsiveness, PLoS Genet. 9(9), e1003605 (2013)
https://doi.org/10.1371/journal.pgen.1003605
87 M. Kim, G. A. Mashour, S. B. Moraes, G. Vanini, V. Tarnal, E. Janke, A. G. Hudetz, and U. Lee, Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness, Front. Comput. Neurosci. 10, 1 (2016)
https://doi.org/10.3389/fncom.2016.00001
88 A. C. Neubauer and A. Fink, Intelligence and neural efficiency, Neurosci. Biobehav. Rev. 33(7), 1004 (2009)
https://doi.org/10.1016/j.neubiorev.2009.04.001
89 E. Genç, C. Fraenz, C. Schlüter, P. Friedrich, R. Hossiep, M. C. Voelkle, J. M. Ling, O. Güntürkün, and R. E. Jung, Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence, Nat. Commun. 9(1), 1905 (2018)
https://doi.org/10.1038/s41467-018-04268-8
90 Y. Chen, S. Wang, C. C. Hilgetag, and C. Zhou, Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems, PLoS Comput. Biol. 9(3), e1002937 (2013)
https://doi.org/10.1371/journal.pcbi.1002937
91 M. Kaiser and C. Hilgetag, Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems, PLoS Comput. Biol. 2(7), e95 (2006)
https://doi.org/10.1371/journal.pcbi.0020095
92 J. Budd, K. Kovács, A. S. Ferecskó, P. Buzás, U. T. Eysel, and Z. F. Kisvárday, Neocortical axon arbors trade-off material and conduction delay conservation, PLoS Comput. Biol. 6(3), e1000711 (2010)
https://doi.org/10.1371/journal.pcbi.1000711
93 S. Baron-Cohen, R. C. Knickmeyer, and M. K. Belmonte, Sex differences in the brain: Implications for explaining autism, Science 310(5749), 819 (2005)
https://doi.org/10.1126/science.1115455
94 I. J. Deary, L. Penke, and W. Johnson, The neuroscience of human intelligence differences, Nat. Rev. Neurosci. 11(3), 201 (2010)
https://doi.org/10.1038/nrn2793
95 L. Cao and Z. Liu, How IQ depends on the running mode of brain network? Chaos 30(7), 073111 (2020)
https://doi.org/10.1063/5.0008289
96 J. Wang and Z. Liu, A chain model for signal detection and transmission, Europhys. Lett. 102(1), 10003 (2013)
https://doi.org/10.1209/0295-5075/102/10003
97 Z. Liu, Organization network enhanced detection and transmission of phase–locking, Europhys. Lett. 100(6), 60002 (2012)
https://doi.org/10.1209/0295-5075/100/60002
98 Q. Shen and Z. Liu, Remote firing propagation in the neural network of C. elegans, Phys. Rev. E 103(5), 052414 (2021)
https://doi.org/10.1103/PhysRevE.103.052414
99 Z. Wang and Z. Liu, Effect of remote signal propagation in an empirical brain network, Chaos 31(6), 063126 (2021)
https://doi.org/10.1063/5.0054296
100 I. Diez, A. Erramuzpe, I. Escudero, B. Mateos, A. Cabrera, D. Marinazzo, E. J. Sanz-Arigita, S. Stramaglia, and J. M. Cortes Diaz, Information flow between resting-state networks, Brain Connect. 5(9), 554 (2015)
https://doi.org/10.1089/brain.2014.0337
101 M. R. Brier, J. B. Thomas, A. Z. Snyder, T. L. Benzinger, D. Zhang, M. E. Raichle, D. M. Holtzman, J. C. Morris, and B. M. Ances, Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression, J. Neurosci. 32(26), 8890 (2012)
https://doi.org/10.1523/JNEUROSCI.5698-11.2012
102 E. J. Sanz-Arigita, M. M. Schoonheim, J. S. Damoiseaux, S. A. R. B. Rombouts, E. Maris, F. Barkhof, P. Scheltens, and C. J. Stam, Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity, PLoS One 5(11), e13788 (2010)
https://doi.org/10.1371/journal.pone.0013788
103 E. Başar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, Gamma, alpha, delta, and theta oscillations govern cognitive processes, Int. J. Psychophysiol. 39(2–3), 241 (2001)
https://doi.org/10.1016/S0167-8760(00)00145-8
104 E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10(3), 186 (2009)
https://doi.org/10.1038/nrn2575
105 R. Wang, P. Lin, M. Liu, Y. Wu, T. Zhou, and C. Zhou, Hierarchical connectome modes and critical state jointly maximize human brain functional diversity, Phys. Rev. Lett. 123(3), 038301 (2019)
https://doi.org/10.1103/PhysRevLett.123.038301
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed