Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 43201   https://doi.org/10.1007/s11467-022-1162-5
  本期目录
Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations
Pengfei Zhang()
Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
 全文: PDF(4753 KB)  
Abstract

Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev–Ye–Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the pathintegral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.

Key wordsSYK model    entanglement entropy    large-N expansion
收稿日期: 2022-03-07      出版日期: 2022-04-22
Corresponding Author(s): Pengfei Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 43201.
Pengfei Zhang. Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations. Front. Phys. , 2022, 17(4): 43201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1162-5
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/43201
1 R. Jozsa, Entanglement and quantum computation, arXiv: Quant-ph/9707034 (1997)
2 R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. Royal Soc. Lond. A 459(2036), 2011 (2003)
https://doi.org/10.1098/rspa.2002.1097
3 S. Ding and Z. Jin, Review on the study of entanglement in quantum computation speedup, Chin. Sci. Bull. 52(16), 2161 (2007)
https://doi.org/10.1007/s11434-007-0324-8
4 A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82(17), 174411 (2010)
https://doi.org/10.1103/PhysRevB.82.174411
5 R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014726
6 D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
https://doi.org/10.1103/RevModPhys.91.021001
7 J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)
https://doi.org/10.1103/PhysRevA.43.2046
8 M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)
https://doi.org/10.1103/PhysRevE.50.888
9 A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96(11), 110404 (2006)
https://doi.org/10.1103/PhysRevLett.96.110404
10 M. Levin and X. G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96(11), 110405 (2006)
https://doi.org/10.1103/PhysRevLett.96.110405
11 S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti – de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18), 181602 (2006)
https://doi.org/10.1103/PhysRevLett.96.181602
12 S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 08, 045 (2006)
https://doi.org/10.1088/1126-6708/2006/08/045
13 A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, J. High Energy Phys. 2013, 90 (2013)
https://doi.org/10.1007/JHEP08(2013)090
14 V. E. Hubeny, M. Rangamani, and T. Takayanagi, A covariant holographic entanglement entropy proposal, J. High Energy Phys. 07, 062 (2007)
https://doi.org/10.1088/1126-6708/2007/07/062
15 T. Faulkner, A. Lewkowycz, and J. Maldacena, Quantum corrections to holographic entanglement entropy, J. High Energy Phys. 2013, 74 (2013)
https://doi.org/10.1007/JHEP11(2013)074
16 N. Engelhardt and A. C. Wall, Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime, J. High Energy Phys. 2015, 73 (2015)
https://doi.org/10.1007/JHEP01(2015)073
17 G. Penington, Entanglement wedge reconstruction and the information paradox, J. High Energy Phys. 2020(9), 1 (2020)
https://doi.org/10.1007/JHEP09(2020)002
18 A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, J. High Energy Phys. 2019(12), 1 (2019)
https://doi.org/10.1007/JHEP12(2019)063
19 A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, arXiv: 1908.10996 (2019)
https://doi.org/10.1007/JHEP03(2020)149
20 A. Almheiri, R. Mahajan, and J. Maldacena, Islands outside the horizon, arXiv: 1910.11077 (2019)
21 A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, arXiv: 1911.12333 (2019)
https://doi.org/10.1007/JHEP05(2020)013
22 G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, Replica wormholes and the black hole interior, arXiv: 1911.11977 (2019)
23 P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42, 504005 (2009)
https://doi.org/10.1088/1751-8113/42/50/504005
24 M. Rangamani and T. Takayanagi, in Holographic Entanglement Entropy, Springer, 2017, pp 35–47
https://doi.org/10.1007/978-3-319-52573-0_4
25 M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80(11), 115122 (2009)
https://doi.org/10.1103/PhysRevB.80.115122
26 S. Whitsitt, W. Witczak-Krempa, and S. Sachdev, Entanglement entropy of large-N Wilson–Fisher conformal field theory, Phys. Rev. B 95(4), 045148 (2017)
https://doi.org/10.1103/PhysRevB.95.045148
27 W. Donnelly, S. Timmerman, and N. Valdes-Meller, Entanglement entropy and the large N expansion of two-dimensional Yang–Mills theory, arXiv: 1911.09302 (2019)
28 A. Kitaev, in: Talk given at the Fundamental Physics Prize Symposium, Vol. 10 (2014)
29 S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70(21), 3339 (1993)
https://doi.org/10.1103/PhysRevLett.70.3339
30 J. Maldacena and D. Stanford, Remarks on the Sachdev–Ye–Kitaev model, Phys. Rev. D 94(10), 106002 (2016)
https://doi.org/10.1103/PhysRevD.94.106002
31 J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de Sitter space, Prog. Theor. Exp. Phys. 2016(12), 12C104 (2016)
https://doi.org/10.1093/ptep/ptw124
32 A. Kitaev, and S. J. Suh, The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual, J. High Energy Phys. 2018(5), 1 (2018)
https://doi.org/10.1007/JHEP05(2018)183
33 J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016(8), 1 (2016)
https://doi.org/10.1007/JHEP08(2016)106
34 A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, Quantum quench of the Sachdev–Ye–Kitaev model, Phys. Rev. B 96(20), 205123 (2017)
https://doi.org/10.1103/PhysRevB.96.205123
35 J. C. Louw and S. Kehrein, Thermalization of many many-body interacting SYK models, Phys. Rev. B 105, 075117 (2022)
https://doi.org/10.1103/PhysRevB.105.075117
36 P. Zhang and Y. Chen, Violation and revival of Kramers’ degeneracy in open quantum systems, arXiv: 2108.05493 (2021)
37 D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev–Ye–Kitaev models and beyond: A window into non-Fermi liquids, arXiv: 2109.05037 (2021).
38 R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev–Ye–Kitaev models and holography, Phys. Rev. B 95(15), 155131 (2017)
https://doi.org/10.1103/PhysRevB.95.155131
39 Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev–Ye–Kitaev model, J. High Energy Phys. 02, 157 (2020)
https://doi.org/10.1007/JHEP02(2020)157
40 P. Chaturvedi, Y. Gu, W. Song, and B. Yu, A note on the complex SYK model and warped CFTs, J. High Energy Phys. 2018, 101 (2018)
https://doi.org/10.1007/JHEP12(2018)101
41 K. Bulycheva, A note on the SYK model with complex fermions, J. High Energy Phys. 2017(12), 1 (2017)
https://doi.org/10.1007/JHEP12(2017)069
42 P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)
43 C. Sunderhauf, L. Piroli, X. L. Qi, N. Schuch, and J. I. Cirac, Quantum chaos in the Brownian SYK model with large finite N: OTOCs and tripartite information, J. High Energy Phys. 2019(11), 1 (2019)
https://doi.org/10.1007/JHEP11(2019)038
44 Y. Gu, X. L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev–Ye–Kitaev models, J. High Energy Phys. 2017, 125 (2017)
https://doi.org/10.1007/JHEP05(2017)125
45 Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev–Ye–Kitaev chains, SciPost Phys. 2, 018 (2017)
https://doi.org/10.21468/SciPostPhys.2.3.018
46 S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95(13), 134302 (2017)
https://doi.org/10.1103/PhysRevB.95.134302
47 X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, Competition between chaotic and nonchaotic phases in a quadratically coupled Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 119(20), 207603 (2017)
https://doi.org/10.1103/PhysRevLett.119.207603
48 X. Y. Song, C. M. Jian, and L. Balents, Strongly correlated metal built from Sachdev–Ye–Kitaev models, Phys. Rev. Lett. 119(21), 216601 (2017)
https://doi.org/10.1103/PhysRevLett.119.216601
49 S. K. Jian and H. Yao, Solvable Sachdev–Ye–Kitaev models in higher dimensions: From diffusion to many-body localization, Phys. Rev. Lett. 119(20), 206602 (2017)
https://doi.org/10.1103/PhysRevLett.119.206602
50 Y. Chen, H. Zhai, and P. Zhang, Tunable quantum chaos in the Sachdev–Ye–Kitaev model coupled to a thermal bath, J. High Energy Phys. 2017, 150 (2017)
https://doi.org/10.1007/JHEP07(2017)150
51 P. Zhang, Dispersive Sachdev–Ye–Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96(20), 205138 (2017)
https://doi.org/10.1103/PhysRevB.96.205138
52 Z. Bi, C. M. Jian, Y. Z. You, K. A. Pawlak, and C. Xu, Instability of the non-Fermi-liquid state of the Sachdev–Ye–Kitaev model, Phys. Rev. B 95(20), 205105 (2017)
https://doi.org/10.1103/PhysRevB.95.205105
53 P. Narayan and J. Yoon, SYK-like tensor models on the lattice, J. High Energy Phys. 2017, 83 (2017)
https://doi.org/10.1007/JHEP08(2017)083
54 C. Liu, X. Chen, and L. Balents, Quantum entanglement of the Sachdev–Ye–Kitaev models, Phys. Rev. B 97(24), 245126 (2018)
https://doi.org/10.1103/PhysRevB.97.245126
55 W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94(3), 035135 (2016)
https://doi.org/10.1103/PhysRevB.94.035135
56 Y. Huang and Y. Gu, Eigenstate entanglement in the Sachdev–Ye–Kitaev model, Phys. Rev. D 100(4), 041901 (2019)
https://doi.org/10.1103/PhysRevD.100.041901
57 P. Zhang, C. Liu, and X. Chen, Subsystem Rényi entropy of thermal ensembles for SYK-like models, SciPost Phys. 8, 094 (2020)
https://doi.org/10.21468/SciPostPhys.8.6.094
58 P. Zhang, Entanglement entropy and its quench dynamics for pure states of the Sachdev–Ye–Kitaev model, J. High Energy Phys. 06, 143 (2020)
https://doi.org/10.1007/JHEP06(2020)143
59 A. Haldar, S. Bera, and S. Banerjee, Rényi entanglement entropy of Fermi and non-Fermi liquids: Sachdev–Ye–Kitaev model and dynamical mean field theories, Phys. Rev. Res. 2(3), 033505 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033505
60 J. Kudler-Flam, R. Sohal, and L. Nie, Information scrambling with conservation laws, arXiv: 2107.04043 (2021)
https://doi.org/10.21468/SciPostPhys.12.4.117
61 Y. Gu, A. Lucas, and X. L. Qi, Spread of entanglement in a Sachdev–Ye–Kitaev chain, J. High Energy Phys. 2017, 120 (2017)
https://doi.org/10.1007/JHEP09(2017)120
62 R. Sohal, L. Nie, X. Q. Sun, and E. Fradkin, Thermalization of randomly coupled SYK models, J. Stat. Mech. 2022(1), 013103 (2022)
https://doi.org/10.1088/1742-5468/ac416b
63 Y. Chen, X. L. Qi, and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, J. High Energy Phys. 2020, 121 (2020)
https://doi.org/10.1007/JHEP06(2020)121
64 Y. Chen, Entropy linear response theory with non-Markovian bath, J. High Energy Phys. 2021, 215 (2021)
https://doi.org/10.1007/JHEP04(2021)215
65 P. Dadras and A. Kitaev, Perturbative calculations of entanglement entropy, J. High Energy Phys. 2021(3), 1 (2021)
https://doi.org/10.1007/JHEP03(2021)198
66 S. K. Jian, B. Swingle, and Z. Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, J. High Energy Phys. 2021, 14 (2021)
https://doi.org/10.1007/JHEP03(2021)014
67 S. K. Jian and B. Swingle, Chaos-protected locality, arXiv: 2109.03825 (2021)
68 K. X. Su, P. Zhang, and H. Zhai, Page curve from non-Markovianity, J. High Energy Phys. 2021, 156 (2021)
https://doi.org/10.1007/JHEP06(2021)156
69 D. L. Nedel, Time dependent entanglement entropy in SYK models and page curve, Phys. Lett. B 817, 136340 (2021)
https://doi.org/10.1016/j.physletb.2021.136340
70 Y. M. Chen and P. F. Zhang Entanglement entropy of two coupled SYK models and eternal traversable wormhole, J. High Energy Phys. 2019, 33 (2019)
https://doi.org/10.1007/JHEP07(2019)033
71 P. Dadras, Disentangling the thermofield-double state, J. High Energy Phys. 2022, 75 (2022)
https://doi.org/10.1007/JHEP01(2022)075
72 S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14(10), 2460 (1976)
https://doi.org/10.1103/PhysRevD.14.2460
73 M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2002
74 Y. Li, X. Chen, and M. P. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98(20), 205136 (2018)
https://doi.org/10.1103/PhysRevB.98.205136
75 X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7(2), 24 (2019)
https://doi.org/10.21468/SciPostPhys.7.2.024
76 Y. Li, X. Chen, and M. P. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100(13), 134306 (2019)
https://doi.org/10.1103/PhysRevB.100.134306
77 B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9(3), 031009 (2019)
https://doi.org/10.1103/PhysRevX.9.031009
78 A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Unitary-projective entanglement dynamics, Phys. Rev. B 99(22), 224307 (2019)
https://doi.org/10.1103/PhysRevB.99.224307
79 Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101(10), 104301 (2020)
https://doi.org/10.1103/PhysRevB.101.104301
80 S. Choi, Y. Bao, X. L. Qi, and E. Altman, Quantum error correction in scrambling dynamics and measurement-induced phase transition, Phys. Rev. Lett. 125(3), 030505 (2020)
https://doi.org/10.1103/PhysRevLett.125.030505
81 M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10(4), 041020 (2020)
https://doi.org/10.1103/PhysRevX.10.041020
82 M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125(7), 070606 (2020)
https://doi.org/10.1103/PhysRevLett.125.070606
83 C. M. Jian, Y. Z. You, R. Vasseur, and A. W. Ludwig, Measurement-induced criticality in random quantum circuits, Phys. Rev. B 101(10), 104302 (2020)
https://doi.org/10.1103/PhysRevB.101.104302
84 M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100(6), 064204 (2019)
https://doi.org/10.1103/PhysRevB.100.064204
85 A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A. Huse, and J. Pixley, Critical properties of the measurement-induced transition in random quantum circuits, Phys. Rev. B 101(6), 060301 (2020)
https://doi.org/10.1103/PhysRevB.101.060301
86 Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonintegrable model by densitymatrix renormalization group calculations, Phys. Rev. Res. 2(1), 013022 (2020)
https://doi.org/10.1103/PhysRevResearch.2.013022
87 L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R. Mucciolo, and A. E. Ruckenstein, Nonuniversal entanglement level statistics in projection-driven quantum circuits, Phys. Rev. B 101(23), 235104 (2020)
https://doi.org/10.1103/PhysRevB.101.235104
88 S. Goto and I. Danshita, Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation, Phys. Rev. A 102(3), 033316 (2020)
https://doi.org/10.1103/PhysRevA.102.033316
89 C. M. Jian, B. Bauer, A. Keselman, and A. W. Ludwig, Criticality and entanglement in non-unitary quantum circuits and tensor networks of non-interacting fermions, arXiv: 2012.04666 (2020)
90 Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Ann. Phys. 2021, 168618 (2021)
https://doi.org/10.1016/j.aop.2021.168618
91 O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free fermion chain – from extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021)
https://doi.org/10.1103/PhysRevLett.126.170602
92 X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent conformal symmetry in nonunitary random dynamics of free fermions, Phys. Rev. Research 2, 033017 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033017
93 A. Nahum and B. Skinner, Entanglement and dynamics of diffusion-annihilation processes with Majorana defects, Phys. Rev. Research 2, 023288 (2020)
https://doi.org/10.1103/PhysRevResearch.2.023288
94 C. Liu, P. Zhang, and X. Chen, Non-unitary dynamics of Sachdev–Ye–Kitaev chain, SciPost Phys. 10, 048 (2021)
https://doi.org/10.21468/SciPostPhys.10.2.048
95 P. Zhang, S. K. Jian, C. Liu, and X. Chen, Emergent replica conformal symmetry in non-Hermitian SYK2 chains, Quantum 5, 579 (2021)
https://doi.org/10.22331/q-2021-11-16-579
96 S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Measurement-induced phase transition in the monitored Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 127(14), 140601 (2021)
https://doi.org/10.1103/PhysRevLett.127.140601
97 P. Zhang, C. Liu, S. K. Jian, and X. Chen, Universal entanglement transitions of free fermions with long-range non-unitary dynamics, arXiv: 2105.08895 (2021)
98 S. Sahu, S. K. Jian, G. Bentsen, and B. Swingle, Entanglement phases in large-N hybrid Brownian circuits with long-range couplings, arXiv: 2109.00013 (2021)
99 S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Quantum error as an emergent magnetic field, arXiv: 2106.09635 (2021)
100 S. K. Jian and B. Swingle, Phase transition in von Neumann entanglement entropy from replica symmetry breaking, arXiv: 2108.11973 (2021)
101 S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, 1988
102 A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010
https://doi.org/10.1017/CBO9780511789984
103 C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society, 1997
104 A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63(13), 134406 (2001)
https://doi.org/10.1103/PhysRevB.63.134406
105 A. M. García-García, and J. J. Verbaarschot, Analytical spectral density of the Sachdev–Ye–Kitaev model at finite N, Phys. Rev. D 96(6), 066012 (2017)
https://doi.org/10.1103/PhysRevD.96.066012
106 D. Bagrets, A. Altland, and A. Kamenev, Sachdev– Ye–Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191 (2016)
https://doi.org/10.1016/j.nuclphysb.2016.08.002
107 D. Stanford and E. Witten, Fermionic localization of the schwarzian theory, J. High Energy Phys. 2017(10), 1 (2017)
https://doi.org/10.1007/JHEP10(2017)008
108 T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, Solving the Schwarzian via the conformal bootstrap, J. High Energy Phys. 2017(8), 1 (2017)
https://doi.org/10.1007/JHEP08(2017)136
109 Z. Yang, The quantum gravity dynamics of near extremal black holes, J. High Energy Phys. 2019, 205 (2019)
https://doi.org/10.1007/JHEP05(2019)205
110 A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
111 P. F. Zhang, Y. F. Gu, and A. Kitaev, An obstacle to sub-AdS holography for SYK-like models, J. High Energy Phys. 2021, 94 (2021)
https://doi.org/10.1007/JHEP03(2021)094
112 D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)
https://doi.org/10.1103/PhysRevLett.71.1291
113 I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv: 1707.02325 (2017)
114 W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57(2), 107 (1976)
https://doi.org/10.1016/0375-9601(76)90178-X
115 P. Łydzba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic Hamiltonians, Phys. Rev. Lett. 125(18), 180604 (2020)
https://doi.org/10.1103/PhysRevLett.125.180604
116 B. Bhattacharjee, P. Nandy, and T. Pathak, Eigenstate capacity and page curve in fermionic Gaussian states, Phys. Rev. B 104(21), 214306 (2021)
https://doi.org/10.1103/PhysRevB.104.214306
117 H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A Math. Theor. 42(50), 504007 (2009)
https://doi.org/10.1088/1751-8113/42/50/504007
118 P. J. Forrester, Quantum conductance problems and the Jacobi ensemble, J. Phys. Math. Gen. 39(22), 6861 (2006)
https://doi.org/10.1088/0305-4470/39/22/004
119 P. J. Forrester, Log-Gases and Random Matrices (LMS-34), Princeton University Press, 2010
https://doi.org/10.1515/9781400835416
120 E. Bianchi, L. Hackl, and M. Kieburg, Page curve for fermionic Gaussian states, Phys. Rev. B 103(24), L241118 (2021)
https://doi.org/10.1103/PhysRevB.103.L241118
121 There are also studies on subsystem entropy of systems prepared in thermal ensembles and coupled to a bath [68].
122 P. Zhang, Evaporation dynamics of the Sachdev–Ye–Kitaev model, Phys. Rev. B 100(24), 245104 (2019)
https://doi.org/10.1103/PhysRevB.100.245104
123 A. Almheiri, A. Milekhin, and B. Swingle, Universal constraints on energy flow and SYK thermalization, arXiv: 1912.04912 (2019)
124 Similar calculations has been carried out in [61] for SYK chains.
125 M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016
126 We thank Yingfei Gu for explaining this example.
127 X. Dong, D. Harlow, and A. C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117(2), 021601 (2016)
https://doi.org/10.1103/PhysRevLett.117.021601
128 Y. Chen, Pulling out the island with modular flow, J. High Energy Phys. 2020, 33 (2020)
https://doi.org/10.1007/JHEP03(2020)033
129 P. Hayden, S. Nezami, X. L. Qi, N. Thomas, M. Walter, and Z. Yang, Holographic duality from random tensor networks, J. High Energy Phys. 2016(11), 1 (2016)
https://doi.org/10.1007/JHEP11(2016)009
130 A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8(2), 021014 (2018)
https://doi.org/10.1103/PhysRevX.8.021014
131 C. Von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L. Sondhi, Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws, Phys. Rev. X 8(2), 021013 (2018)
https://doi.org/10.1103/PhysRevX.8.021013
132 Here HI is not positive semidefinite. However, we can always make it positive semidefinite by shifting a large enough constant.
133 H. Zhai, Ultracold Atomic Physics, Cambridge University Press, 2021
https://doi.org/10.1017/9781108595216
134 M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality, arXiv: 2103.06873 (2021)
https://doi.org/10.1103/PhysRevX.12.011045
135 X. Dong, The gravity dual of Rényi entropy, Nat. Commun. 7, 12472 (2016)
https://doi.org/10.1038/ncomms12472
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed