Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42201   https://doi.org/10.1007/s11467-022-1165-2
  本期目录
Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics
Kai Wang1, Yong-Pan Gao2, Rongzhen Jiao1, Chuan Wang3()
1. School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Electronic Engineering and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
3. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
 全文: PDF(5239 KB)  
Abstract

Recently, the photon–magnon coherent interaction based on the collective spins excitation in ferromagnetic materials has been achieved experimentally. Under the prospect, the magnons are proposed to store and process quantum information. Meanwhile, cavity-optomagnonics which describes the interaction between photons and magnons has been developing rapidly as an interesting topic of the cavity quantum electrodynamics. Here in this short review, we mainly introduce the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics. According to the frequency range of the electromagnetic field, cavity optomagnonics can be divided into microwave cavity optomagnonics and optical cavity optomagnonics, due to the different dynamics of the photon–magnon interaction. As the interaction between the electromagnetic field and the magnetic materials is enhanced in the cavity-optomagnonic system, it provides great significance to explore the nonlinear characteristics and quantum properties for different magnetic systems. More importantly, the electromagnetic response of optomagnonics covers the frequency range from gigahertz to terahertz which provides a broad frequency platform for the multi-mode controlling in quantum systems.

Key wordsoptomagnetic coupling    manipulation    cavity-optomagnonics    photon–magnon interaction
收稿日期: 2021-11-23      出版日期: 2022-05-25
Corresponding Author(s): Chuan Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42201.
Kai Wang, Yong-Pan Gao, Rongzhen Jiao, Chuan Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. , 2022, 17(4): 42201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1165-2
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42201
1 R. L. Stamps, S. Breitkreutz, J. Åkerman, A. V. Chumak, Y. C. Otani, G. E. W. Bauer, J. U. Thiele, M. Bowen, S. A. Majetich, M. Kläui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, The 2014 magnetism roadmap, J. Phys. D: Appl. Phys. 47, 333001 (2014)
https://doi.org/10.1088/0022-3727/47/33/333001
2 Ö. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104, 077202 (2010)
https://doi.org/10.1103/PhysRevLett.104.077202
3 Ö. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82, 104413 (2010)
https://doi.org/10.1103/PhysRevB.82.104413
4 H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 111, 127003 (2013)
https://doi.org/10.1103/PhysRevLett.111.127003
5 Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing Ferromagnetic Magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113, 083603 (2014)
https://doi.org/10.1103/PhysRevLett.113.083603
6 X. Zhang, C. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113, 156401 (2014)
https://doi.org/10.1103/PhysRevLett.113.156401
7 A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin–orbit coupled photons, Phys. Rev. Lett. 116, 223601 (2016)
https://doi.org/10.1103/PhysRevLett.116.223601
8 J. A. Haigh, S. Langenfeld, N. J. Lambert, J. J. Baumberg, A. J. Ramsay, A. Nunnenkamp, and A. J. Ferguson, Magneto–optical coupling in whispering-gallerymode resonators, Phys. Rev. A 92, 063845 (2015)
https://doi.org/10.1103/PhysRevA.92.063845
9 X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Optomagnonic whispering gallery microresonators, Phys. Rev. Lett. 117, 123605 (2016)
https://doi.org/10.1103/PhysRevLett.117.123605
10 J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant brillouin light scattering in Magneto–optical cavities, Phys. Rev. Lett. 117, 133602 (2016)
https://doi.org/10.1103/PhysRevLett.117.133602
11 S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Light scattering by magnons in whispering gallery mode cavities, Phys. Rev. B 96, 094412 (2017)
https://doi.org/10.1103/PhysRevB.96.094412
12 R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, Bidirectional conversion between microwave and light via ferromagnetic magnons, Phys. Rev. B 93, 174427 (2016)
https://doi.org/10.1103/PhysRevB.93.174427
13 N. Zhu, X. Zhang, X. Han, C.-L. Zou, C. Zhong, C.-H. Wang, L. Jiang, and H. X. Tang, Waveguide cavity optomagnonics for microwave-to-optics conversion, Optica 7(10), 1291 (2020)
https://doi.org/10.1364/OPTICA.397967
14 Y. S. Ihn, S.-Y. Lee, D. Kim, S. Hyuk Yim, and Z. Kim, Coherent multimode conversion from microwave to optical wave via a magnon-cavity hybrid system, Phys. Rev. B 102, 064418 (2020)
https://doi.org/10.1103/PhysRevB.102.064418
15 Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94, 224410 (2016)
https://doi.org/10.1103/PhysRevB.94.224410
16 Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120, 057202 (2018)
https://doi.org/10.1103/PhysRevLett.120.057202
17 C. Kong, H. Xiong, and Y. Wu, Magnon-induced non-reciprocity based on the magnon kerr effect, Phys. Rev. Appl. 12, 034001 (2019)
https://doi.org/10.1103/PhysRevApplied.12.034001
18 Z.-X. Liu, B. Wang, H. Xiong, and Y. Wu, Magnon-induced high-order sideband generation, Opt. Lett. 43, 3698 (2018)
https://doi.org/10.1364/OL.43.003698
19 D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, and J. Q. You, Observation of the exceptional point in cavity magnon-polaritons, Nat. Commun. 8, 1368 (2017)
https://doi.org/10.1038/s41467-017-01634-w
20 G.-Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019)
https://doi.org/10.1103/PhysRevB.99.054404
21 J. Zhao, Y. Liu, L. Wu, C.-K. Duan, Y.-X. Liu, and J. Du, Observation of anti-PT-symmetry phase transition in the magnon–cavity–magnon coupled system, Phys. Rev. Applied 13, 014053 (2020)
https://doi.org/10.1103/PhysRevApplied.13.014053
22 Y. Yang, Y.-P. Wang, J. W. Rao, Y. S. Gui, B. M. Yao, W. Lu, and C.-M. Hu, Unconventional singularity in anti-parity–time symmetric cavity magnonics, Phys. Rev. Lett. 125, 147202 (2020)
https://doi.org/10.1103/PhysRevLett.125.147202
23 Y. Cao and P. Yan, Exceptional magnetic sensitivity of PT-symmetric cavity magnon polaritons, Phys. Rev. B 99, 214415 (2019)
https://doi.org/10.1103/PhysRevB.99.214415
24 X. Zhang, K. Ding, X. Zhou, J. Xu, and D. Jin, Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons, Phys. Rev. Lett. 123, 237202 (2019)
https://doi.org/10.1103/PhysRevLett.123.237202
25 J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Enhanced sensing of weak anharmonicities through coherences in dissipatively coupled anti-PT symmetric systems, Phys. Rev. Lett. 126, 180401 (2021)
https://doi.org/10.1103/PhysRevLett.126.180401
26 B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26, 20248 (2018)
https://doi.org/10.1364/OE.26.020248
27 B. Wang, C. Kong, Z.-X. Liu, H. Xiong, and Y. Wu, Magnetic-field-controlled magnon chaos in an active cavity-magnon system, Laser Phys. Lett. 16, 045208 (2019)
https://doi.org/10.1088/1612-202X/ab09e5
28 Z.-X. Liu, C. You, B. Wang, H. Xiong, and Y. Wu, Phasemediated magnon chaos-order transition in cavity optomagnonics, Opt. Lett. 44, 507 (2019)
https://doi.org/10.1364/OL.44.000507
29 M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao, Y. S. Gui, R. L. Stamps, and C.-M. Hu, Level attraction due to dissipative magnon-photon coupling, Phys. Rev. Lett. 121, 137203 (2018)
https://doi.org/10.1103/PhysRevLett.121.137203
30 B. Bhoi, B. Kim, S.-H. Jang, J. Kim, J. Yang, Y.-J. Cho, and S.-K. Kim, Abnormal anticrossing effect in photon–magnon coupling, Phys. Rev. B 99, 134426 (2019)
https://doi.org/10.1103/PhysRevB.99.134426
31 Y. Yang, J. W. Rao, Y. S. Gui, B. M. Yao, W. Lu, and C.-M. Hu, Control of the Magnon–photon level attraction in a planar cavity, Phys. Rev. Applied 11, 054023 (2019)
https://doi.org/10.1103/PhysRevApplied.11.054023
32 J. W. Rao, C. H. Yu, Y. T. Zhao, Y. S. Gui, X. L. Fan, D. S. Xue, and C.-M. Hu, Level attraction and level repulsion of magnon coupled with a cavity anti-resonance, New J. Phys. 21, 065001 (2019)
https://doi.org/10.1088/1367-2630/ab2482
33 Y.-P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, and C.-M. Hu, Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123, 127202 (2019)
https://doi.org/10.1103/PhysRevLett.123.127202
34 W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of attractive level crossing via a dissipative mode, Phys. Rev. Lett. 123, 227201 (2019)
https://doi.org/10.1103/PhysRevLett.123.227201
35 Bimu Yao, Tao Yu, Y. S. Gui, J. W. Rao, Y. T. Zhao, W. Lu, and C.-M. Hu, Coherent control of magnon radiative damping with local photon states, Commun. Phys. 2, 161 (2019)
https://doi.org/10.1038/s42005-019-0264-z
36 B. Yao, T. Yu, X. Zhang, W. Lu, Y. Gui, C.-M. Hu, and Y. M. Blanter, The microscopic origin of magnon–photon level attraction by traveling waves: Theory and experiment, Phys. Rev. B 100, 214426 (2019)
https://doi.org/10.1103/PhysRevB.100.214426
37 J. W. Rao, Y. P. Wang, Y. Yang, T. Yu, Y. S. Gui, X. L. Fan, D. S. Xue, and C.-M. Hu, Interactions between a magnon mode and a cavity photon mode mediated by traveling photons, Phys. Rev. B 101, 064404 (2020)
https://doi.org/10.1103/PhysRevB.101.064404
38 Y.-P. Wang and C.-M. Hu, Dissipative couplings in cavity magnonics, J. Appl. Phys. 127, 130901 (2020)
https://doi.org/10.1063/1.5144202
39 I. Proskurin, R. Macêdo, and R. L. Stamps, Microscopic origin of level attraction for a coupled magnon–photon system in a microwave cavity, New J. Phys. 21, 095003 (2019)
https://doi.org/10.1088/1367-2630/ab3cb7
40 A. Osada, A. Gloppe, Y. Nakamura, and K. Usami, Orbital angular momentum conservation in Brillouin light scattering within a ferromagnetic sphere, New J. Phys. 20, 103018 (2018)
https://doi.org/10.1088/1367-2630/aae4b1
41 A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120, 133602 (2018)
https://doi.org/10.1103/PhysRevLett.120.133602
42 J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W. Bauer, and A. J. Ramsay, Selection rules for cavityenhanced Brillouin light scattering from magnetostatic modes, Phys. Rev. B 97, 214423 (2018)
https://doi.org/10.1103/PhysRevB.97.214423
43 A. Gloppe, R. Hisatomi, Y. Nakata, Y. Nakamura, and K. Usami, Resonant magnetic induction tomography of a magnetized sphere, Phys. Rev. Applied 12, 014061 (2019)
https://doi.org/10.1103/PhysRevApplied.12.014061
44 J. Graf, H. Pfeifer, F. Marquardt, and S. V. Kusminskiy, Cavity optomagnonics with magnetic textures: Coupling a magnetic vortex to light, Phys. Rev. B 98, 241406 (2018)
https://doi.org/10.1103/PhysRevB.98.241406
45 S. Sharma, B. Z. Rameshti, Y. M. Blanter, and G. E. W. Bauer, Optimal mode matching in cavity optomagnonics, Phys. Rev. B 99, 214423 (2019)
https://doi.org/10.1103/PhysRevB.99.214423
46 P. A. Pantazopoulos, N. Stefanou, E. Almpanis, and N. Papanikolaou, Photomagnonic nanocavities for strong light–spin-wave interaction, Phys. Rev. B 96, 104425 (2017)
https://doi.org/10.1103/PhysRevB.96.104425
47 P. A. Pantazopoulos, K. L. Tsakmakidis, E. Almpanis, G. P. Zouros, and N. Stefanou, High-efficiency triple-resonant inelastic light scattering in planar optomagnonic cavities, New J. Phys. 21, 095001 (2019)
https://doi.org/10.1088/1367-2630/ab3ad9
48 P. A. Pantazopoulos and N. Stefanou, Planar optomagnonic cavities driven by surface spin waves, Phys. Rev. B 101, 134426 (2020)
https://doi.org/10.1103/PhysRevB.101.134426
49 J. A. Haigh, R. A. Chakalov, and A. J. Ramsay, Subpicoliter magnetoptical cavities, Phys. Rev. Appl. 14, 044005 (2020)
https://doi.org/10.1103/PhysRevApplied.14.044005
50 S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Coupled spin-light dynamics in cavity optomagnonics, Phys. Rev. A 94, 033821 (2016)
https://doi.org/10.1103/PhysRevA.94.033821
51 Y.-P. Gao, C. Cao, Y.-W. Duan, X.-F. Liu, T.-T. Pang, T.-J. Wang, and C. Wang, Magnons scattering induced photonic chaos in the optomagnonic resonators, Nanophotonics 9(7), 1953 (2020)
https://doi.org/10.1515/nanoph-2019-0441
52 Y.-P. Gao, X.-F. Liu, T.-J. Wang, C. Cao, and C. Wang, Photon excitation and photon-blockade effects in optomagnonic microcavities, Phys. Rev. A 100, 043831 (2019)
https://doi.org/10.1103/PhysRevA.100.043831
53 W.-L. Xu, X.-F. Liu, Y. Sun, Y.-P. Gao, T.-J. Wang, and C. Wang, Magnon-induced chaos in an optical PT-symmetric resonator, Phys. Rev. E 101, 012205 (2020)
54 W.-L. Xu, Y.-P. Gao, C. Cao, T.-J. Wang, and C. Wang, Nanoscatterer-mediated frequency combs in cavity optomagnonics, Phys. Rev. A 102, 043519 (2020)
https://doi.org/10.1103/PhysRevA.102.043519
55 W.-L. Xu, Y.-P. Gao, T.-J. Wang, and C. Wang, Magnoninduced optical high-order sideband generation in hybrid atom-cavity optomagnonical system, Opt. Express 28, 22334 (2020)
https://doi.org/10.1364/OE.394488
56 A. Mahmoud, F. Ciubotaru, F. Vanderveken, A. V. Chumak, S. Hamdioui, C. Adelmann, and S. Cotofana, Introduction to spin wave computing, J. Appl. Phys. 128, 161101 (2020)
https://doi.org/10.1063/5.0019328
57 L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 101 (1935)
58 T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004)
https://doi.org/10.1109/TMAG.2004.836740
59 I. S. Maksymov and M. Kostylev, Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures, Physica E 69, 253 (2015)
https://doi.org/10.1016/j.physe.2014.12.027
60 T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098 (1940)
https://doi.org/10.1103/PhysRev.58.1098
61 M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 14, 044005 (2014)
https://doi.org/10.1103/PhysRevApplied.2.054002
62 D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere, npj Quantum Inf. 1, 15014 (2015)
https://doi.org/10.1038/npjqi.2015.14
63 N. Kostylev, M. Goryachev, and M. E. Tobar, Superstrong coupling of a microwave cavity to yttrium iron garnet magnons, Appl. Phys. Lett. 108, 062402 (2016)
https://doi.org/10.1063/1.4941730
64 J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93, 144420 (2016)
https://doi.org/10.1103/PhysRevB.93.144420
65 A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103, 093902 (2009)
https://doi.org/10.1103/PhysRevLett.103.093902
66 C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6, 192 (2010)
https://doi.org/10.1038/nphys1515
67 A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity–time synthetic photonic lattices, Nat. Phys. 488, 167 (2012)
https://doi.org/10.1038/nature11298
68 B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394 (2014)
https://doi.org/10.1038/nphys2927
69 P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12, 1139 (2016)
https://doi.org/10.1038/nphys3842
70 Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9, 2182 (2018)
https://doi.org/10.1038/s41467-018-04690-y
71 H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, Ke Xia, and M.-H. Yung, Steady bell state generation via magnon– photon coupling, Phys. Rev. Lett. 124, 053602 (2020)
https://doi.org/10.1103/PhysRevLett.124.053602
72 C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409, 490 (2001)
https://doi.org/10.1038/35054017
73 R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Applications of slow light in telecommunications, Optics Photon. News. 17 (4), 18 (2006)
https://doi.org/10.1364/OPN.17.4.000018
74 S. Rajput, V. Kaushik, S. Jain, and M. Kumar, Slow light enhanced phase shifter based on low-loss silicon-ITO hollow waveguide, IEEE Photon. J. 11, 1 (2019)
https://doi.org/10.1109/JPHOT.2019.2895699
75 Y. Hinakura, Y. Terada, H. Arai, and T. Baba, Electrooptic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes, Opt. Express 26, 11538 (2018)
https://doi.org/10.1364/OE.26.011538
76 K. Qian, F. Wang, R. Wang, S. Zhen, X. Wu, G. Tu, T. Zhang, B. Yu, and L. Zhan, Enhanced sensitivity of fiber laser sensor with Brillouin slow light, Opt. Express 27, 25485 (2019)
https://doi.org/10.1364/OE.27.025485
77 M. F. Yanik, W. Suh, Z. Wang, and S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency, Phys. Rev. Lett. 93, 233903 (2004)
https://doi.org/10.1103/PhysRevLett.93.233903
78 D. Tarhan, S. Huang, and Ö. E. Müstecaplıoğlu, Superluminal and ultraslow light propagation in optomechanical systems, Phys. Rev. A 87, 013824 (2013)
https://doi.org/10.1103/PhysRevA.87.013824
79 B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, Mechanical exceptional-point-induced transparency and slow light, Opt. Express 27, 8069 (2019)
https://doi.org/10.1364/OE.27.008069
80 Q. He, F. Badshah, R. U. Din, H. Zhang, Y. Hu, and G.-Q. Ge, Optomechanically induced transparency and the long-lived slow light in a nonlinear system, J. Opt. Soc. Am. B 35, 1649 (2018)
https://doi.org/10.1364/JOSAB.35.001649
81 Z. Liu, H. Xiong, and Y. Wu, Room-temperature slow light in a coupled cavity magnon-photon system, IEEE Access 7, 57047 (2019)
https://doi.org/10.1109/ACCESS.2019.2913788
82 C.-Z. Liu, Y.-L. Deng, and M. Yin, Relative-cavity-length-controlled slow light in a cascaded magnon–photon system, J. Opt. Soc. Am. B 37, 1127 (2020)
https://doi.org/10.1364/JOSAB.390544
83 J. Z. L. Wu, T. Li, Y.-X. Liu, F. Nori, Y. Liu, and J. Du, Phase-controlled pathway interferences and switchable fast-slow light in a cavity-magnon polariton system, Phys. Rev. Applied 15, 024056 (2021)
https://doi.org/10.1103/PhysRevApplied.15.024056
84 L. Bai, P. Hyde, Y. S. Gui, C.-M. Hu, V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, Universal method for separating spin pumping from spin rectification voltage of ferromagnetic resonance, Phys. Rev. Lett. 111, 217602 (2013)
https://doi.org/10.1103/PhysRevLett.111.217602
85 L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, Spin pumping in electrodynamically coupled magnon–photon systems, Phys. Rev. Lett. 114, 227201 (2015)
https://doi.org/10.1103/PhysRevLett.114.227201
86 L. Ba, M. Harder, P. Hyde, Z. Zhang, C.-M. Hu, Y. P. Chen, and J. Q. Xiao, Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton, Phys. Rev. Lett. 118, 217201 (2017)
https://doi.org/10.1103/PhysRevLett.118.217201
87 T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling mechanical motion with microwave fields, Science 342, 710 (2013)
https://doi.org/10.1126/science.1244563
88 S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K. Hammerer, Quantum entanglement and teleportation in pulsed cavity optomechanics, Phys. Rev. A 84, 052327 (2011)
https://doi.org/10.1103/PhysRevA.84.052327
89 U. Akram, W. Munro, K. Nemoto, and G. J. Milburn, Photon–phonon entanglement in coupled optomechanical arrays, Phys. Rev. A 86, 042306 (2012)
https://doi.org/10.1103/PhysRevA.86.042306
90 M. Ho, E. Oudot, J.-D. Bancal, and N. Sangouard, Witnessing optomechanical entanglement with photon counting, Phys. Rev. Lett. 121, 023602 (2018)
https://doi.org/10.1103/PhysRevLett.121.023602
91 H. Tan, G. Li, and P. Meystre, Dissipation-driven two-mode mechanical squeezed states in optomechanical systems, Phys. Rev. A 87, 033829 (2013)
https://doi.org/10.1103/PhysRevA.87.033829
92 G. Huang, W. Deng, H. Tan, and G. Cheng, Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity, Phys. Rev. A 99, 043819 (2019)
https://doi.org/10.1103/PhysRevA.99.043819
93 J. Li, S.-Y. Zhu, and G. S. Agarwal, Magnon–photon– phonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121, 203601 (2018)
https://doi.org/10.1103/PhysRevLett.121.203601
94 Z.-B. Yang, J.-S. Liu, H. Jin, Q.-H. Zhu, A.-D. Zhu, H.-Y. Liu, Y. Ming, and R.-C. Yang, Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system, Opt. Express 28, 31862-31871 (2020)
https://doi.org/10.1364/OE.404522
95 J. Li, S.-Y. Zhu, and G. S. Agarwal, Squeezed states of magnons and phonons in cavity magnomechanics, Phys. Rev. A 99, 021801 (2019)
https://doi.org/10.1103/PhysRevA.99.021801
96 W. Zhang, D.-Y. Wang, C.-H. Bai, T. Wang, S. Zhang, and H.-F. Wang, Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields, Opt. Express 29, 11773 (2021)
https://doi.org/10.1364/OE.418531
97 J. R. Eshbach and R. W. Damon, Surface magnetostatic modes and surface spin waves, Phys. Rev. 118, 1208 (1960)
https://doi.org/10.1103/PhysRev.118.1208
98 R. W. Damon and J. R. Eshbach, Magnetostatic modes of a ferromagnet slab, J. Phys. Chem. Solids 19, 308 (1961)
https://doi.org/10.1016/0022-3697(61)90041-5
99 J. Graf, S. Sharma, H. Huebl, and S. V. Kusminskiy, Design of an optomagnonic crystal: Towards optimal magnon–photon mode matching at the microscale, Phys. Rev. Research 3, 013277 (2021)
https://doi.org/10.1103/PhysRevResearch.3.013277
100 T. Liu, X. Zhang, H. X. Tang, and M. E. Flatté, Optomagnonics in magnetic solids, Phys. Rev. B 94, 060405 (2016)
https://doi.org/10.1103/PhysRevB.94.060405
101 Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, Cavity-mediated coupling of phonons and magnons, Phys. Rev. A 96, 023826 (2017)
https://doi.org/10.1103/PhysRevA.96.023826
102 V. A. S. V. Bittencourt, V. Feulner, and S. Viola Kusminskiy, Magnon heralding in cavity optomagnonics, Phys. Rev. A 100, 013810 (2019)
https://doi.org/10.1103/PhysRevA.100.013810
103 H. Dery, P. Dalal, Ł. Cywiński, and L. J. Sham, Spinbased logic in semiconductors for reconfigurable largescale circuits, Nature 447, 573 (2007)
https://doi.org/10.1038/nature05833
104 V. E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, and S. O. Demokritov, Excitation of coherent propagating spin waves by pure spin currents, Nat. Commun. 7, 10446 (2016)
https://doi.org/10.1038/ncomms10446
105 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator, Nature 464, 262 (2010)
https://doi.org/10.1038/nature08876
106 V. E. Demidov, H. Ulrichs, S. V. Gurevich, S. O. Demokritov, V. S. Tiberkevich, A. N. Slavin, A. Zholud, and S. Urazhdin, Synchronization of spin Hall nanooscillators to external microwave signals, Nat. Commun. 5, 3179 (2014)
https://doi.org/10.1038/ncomms4179
107 G. Talmelli, F. Ciubotaru, K. Garello, X. Sun, M. Heyns, I. P. Radu, C. Adelmann, and T. Devolder, Spin-wave emission by spin–orbit-torque antennas, Phys. Rev. Appl. 10, 044060 (2018)
https://doi.org/10.1103/PhysRevApplied.10.044060
108 X. Zhang, A. Galda, X. Han, D. Jin, and V. M. Vinokur, Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons, Phys. Rev. Appl. 13, 044039 (2020)
https://doi.org/10.1103/PhysRevApplied.13.044039
109 A. Kord, D. L. Sounas, and A. Alù, Microwave nonreciprocity, Proc. IEEE 108, 1728 (2020)
https://doi.org/10.1109/JPROC.2020.3006041
110 N. Crescini, C. Braggio, G. Carugno, R. Di Vora, A. Ortolan, and G. Ruoso, Magnon-driven dynamics of a hybrid system excited with ultrafast optical pulses, Commun. Phys. 3, 164 (2020)
https://doi.org/10.1038/s42005-020-00435-w
111 Q. Cai, J. Liao, and Q. Zhou, Stationary entanglement between light and microwave via ferromagnetic magnons, Ann. Phys. 532, 2000250 (2020)
https://doi.org/10.1002/andp.202000250
112 D.-W. Luo, X.-F. Qian, and T. Yu, Nonlocal magnon entanglement generation in coupled hybrid cavity systems, Opt. Lett. 46, 1073 (2021)
https://doi.org/10.1364/OL.414975
113 S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska, and S. V. Kusminskiy, Spin cat states in ferromagnetic insulators, Phys. Rev. B 103, L100403 (2021)
https://doi.org/10.1103/PhysRevB.103.L100403
114 Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science 349, 405 (2015)
https://doi.org/10.1126/science.aaa3693
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed