High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction
Tingting Liu1,2, Qianjun Wang3, Cheng Zhang1,2, Xiaofeng Li1,2(), Jun Hu3,4()
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China 3. School of Physical Science and Technology, Soochow University, Suzhou 215006, China 4. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.
. [J]. Frontiers of Physics, 2022, 17(5): 53509.
Tingting Liu, Qianjun Wang, Cheng Zhang, Xiaofeng Li, Jun Hu. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys. , 2022, 17(5): 53509.
Clavero C.. Plasmon-induced hot-electron generation at nanoparticle/metal−oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics , 2014, 8( 2): 95 https://doi.org/10.1038/nphoton.2013.238
2
W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science , 2011, 332( 6030): 702 https://doi.org/10.1126/science.1203056
3
Tian Y., Tatsuma T.. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. , 2004, 16( 16): 1810 https://doi.org/10.1039/b405061d
V. Naik G., M. Shalaev V., Boltasseva A.. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. , 2013, 25( 24): 3264 https://doi.org/10.1002/adma.201205076
6
J. Krayer L., J. Palm K., Gong C., Torres A., E. P. Villegas C., R. Rocha A., S. Leite M., N. Munday J.. Enhanced near-infrared photoresponse from nanoscale Ag−Au alloyed films. ACS Photonics , 2020, 7( 7): 1689 https://doi.org/10.1021/acsphotonics.0c00140
7
Tagliabue G., S. DuChene J., Abdellah M., Habib A., J. Gosztola D., Hattori Y., H. Cheng W., Zheng K., E. Canton S., Sundararaman R., Sá J., A. Atwater H.. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p−GaN heterostructures. Nat. Mater. , 2020, 19( 12): 1312 https://doi.org/10.1038/s41563-020-0737-1
8
Ortolani M., Mancini A., Budweg A., Garoli D., Brida D., de Angelis F.. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys. Rev. B , 2019, 99( 3): 035435 https://doi.org/10.1103/PhysRevB.99.035435
9
J. Chang Y., H. Shih K.. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. J. Appl. Phys. , 2016, 119( 18): 183101 https://doi.org/10.1063/1.4948386
10
J. Leenheer A., Narang P., S. Lewis N., A. Atwater H.. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. , 2014, 115( 13): 134301 https://doi.org/10.1063/1.4870040
11
P. White T., R. Catchpole K.. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. , 2012, 101( 7): 073905 https://doi.org/10.1063/1.4746425
12
T. Ross R., J. Nozik A.. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. , 1982, 53( 5): 3813 https://doi.org/10.1063/1.331124
13
Sundararaman R., Narang P., S. Jermyn A., A. III Goddard W., A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. , 2014, 5( 1): 5788 https://doi.org/10.1038/ncomms6788
14
M. Brown A., Sundararaman R., Narang P., A. III Goddard W., A. Atwater H.. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano , 2016, 10( 1): 957 https://doi.org/10.1021/acsnano.5b06199
15
Ladstädter F., Hohenester U., Puschnig P., Ambrosch-Draxl C.. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B , 2004, 70( 23): 235125 https://doi.org/10.1103/PhysRevB.70.235125
Y. Lee D., H. Park J., H. Kim Y., H. Lee M., I. Cho N.. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. , 2014, 14( 3): 421 https://doi.org/10.1016/j.cap.2013.12.025
18
Guo Q., Y. Zhou C., B. Ma Z., M. Yang X.. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. , 2019, 31( 50): 1901997 https://doi.org/10.1002/adma.201901997
19
Z. Zhang D., H. Gu X., Y. Jing F., L. Gao F., G. Zhou J., B. Ruan S.. High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. , 2015, 618 : 551 https://doi.org/10.1016/j.jallcom.2014.09.004
20
Bach U., Lupo D., Comte P., E. Moser J., Weissortel F., Salbeck J., Spreitzer H., Gratzel M.. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395( 6702): 583 https://doi.org/10.1038/26936
21
Traver E., A. Karaballi R., E. Monfared Y., Daurie H., A. Gagnon G., Dasog M.. TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. , 2020, 3( 3): 2787 https://doi.org/10.1021/acsanm.0c00107
22
Kumar M., Umezawa N., Ishii S., Nagao T.. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics , 2016, 3( 1): 43 https://doi.org/10.1021/acsphotonics.5b00409
23
W. Yu M., Ishii S., L. Shinde S., K. Tanjaya N., P. Chen K., Nagao T.. Direct observation of photoinduced charge separation at transition-metal nitride−semiconductor interfaces. ACS Appl. Mater. Interfaces , 2020, 12( 50): 56562 https://doi.org/10.1021/acsami.0c14690
24
Marlo M., Milman V.. Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys. Rev. B , 2000, 62( 4): 2899 https://doi.org/10.1103/PhysRevB.62.2899
25
H. Chen X., T. Pekarek R., Gu J., Zakutayev A., E. Hurst K., R. Neale N., Yang Y., C. Beard M.. Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces , 2020, 12( 36): 40339 https://doi.org/10.1021/acsami.0c11474
26
Naldoni A., Guler U., X. Wang Z., Marelli M., Malara F., G. Meng X., V. Besteiro L., O. Govorov A., V. Kildishev A., Boltasseva A., M. Shalaev V.. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. , 2017, 5( 15): 1601031 https://doi.org/10.1002/adom.201601031
V. Naik G., L. Schroeder J., J. Ni X., V. Kildishev A., D. Sands T., Boltasseva A.. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express , 2012, 2( 4): 478 https://doi.org/10.1364/OME.2.000478
29
McIntyre D., E. Greene J., Hakansson G., E. Sundgren J., D. Münz W.. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. , 1990, 67( 3): 1542 https://doi.org/10.1063/1.345664
30
Bordone P., Jacoboni C., Lugli P., Reggiani L., Kocevar P.. Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties. Physica B+C , 1985, 134( 1−3): 169 https://doi.org/10.1016/0378-4363(85)90338-9
31
Piryatinski A., K. Huang C., J. T. Kwan T.. Theory of electron transport and emission from a semiconductor nanotip. J. Appl. Phys. , 2019, 125( 21): 214301 https://doi.org/10.1063/1.5088518
32
Blandre E., Jalas D., Y. Petrov A., Eich M.. Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics , 2018, 5( 9): 3613 https://doi.org/10.1021/acsphotonics.8b00473
33
Kresse G., Furthmuller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. , 1996, 6( 1): 15 https://doi.org/10.1016/0927-0256(96)00008-0
34
Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169 https://doi.org/10.1103/PhysRevB.54.11169
35
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1999, 59( 3): 1758 https://doi.org/10.1103/PhysRevB.59.1758
36
P. Perdew J., Ruzsinszky A., I. Csonka G., A. Vydrov O., E. Scuseria G., A. Constantin L., L. Zhou X., Burke K.. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. , 2008, 100( 13): 136406 https://doi.org/10.1103/PhysRevLett.100.136406
37
L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., P. Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B , 1998, 57( 3): 1505 https://doi.org/10.1103/PhysRevB.57.1505
38
Habib A., Florio F., Sundararaman R.. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. , 2018, 20( 6): 064001 https://doi.org/10.1088/2040-8986/aac1d8
39
A. Mills K., F. Davis R., D. Kevan S., Thornton G., A. Shirley D.. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B , 1980, 22( 2): 581 https://doi.org/10.1103/PhysRevB.22.581
40
W. Ashcroft N. D. Mermin N. Dan W., Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016
41
Gall D., Petrov I., Hellgren N., Hultman L., E. Sundgren J., E. Greene J.. Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. , 1998, 84( 11): 6034 https://doi.org/10.1063/1.368913
42
Sundararaman R., Letchworth-Weaver K., A. Schwarz K., Gunceler D., Ozhabes Y., A. Arias T.. JDFTx: Software for joint density-functional theory. SoftwareX , 2017, 6 : 278 https://doi.org/10.1016/j.softx.2017.10.006
43
Schlipf M., Gygi F.. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. , 2015, 196 : 36 https://doi.org/10.1016/j.cpc.2015.05.011
44
Marzari N., Vanderbilt D.. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B , 1997, 56( 20): 12847 https://doi.org/10.1103/PhysRevB.56.12847
45
Xu X., Dutta A., Khurgin J., Wei A., M. Shalaev W., Boltasseva A.. TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. , 2020, 14( 5): 1900376 https://doi.org/10.1002/lpor.201900376
46
C. Ratchford D., D. Dunkelberger A., Vurgaftman I., C. Owrutsky J., E. Pehrsson P.. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. , 2017, 17( 10): 6047 https://doi.org/10.1021/acs.nanolett.7b02366
47
Tagliabue G., S. Jermyn A., Sundararaman R., J. Welch A., S. Duchene J., Pala R., R. Davoyan A., Narang P., A. Atwater H.. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. , 2018, 9( 1): 3394 https://doi.org/10.1038/s41467-018-05968-x
48
Zhang C., Wu K., Giannini V., F. Li X.. Planar hot-electron photodetection with Tamm plasmons. ACS Nano , 2017, 11( 2): 1719 https://doi.org/10.1021/acsnano.6b07578
49
A. Mostofi A., R. Yates J., S. Lee Y., Souza I., Vanderbilt D., Marzari N.. Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun. , 2008, 178( 9): 685 https://doi.org/10.1016/j.cpc.2007.11.016
50
Marzari N., A. Mostofi A., R. Yates J., Souza I., Vanderbilt D.. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. , 2012, 84( 4): 1419 https://doi.org/10.1103/RevModPhys.84.1419
51
Gerbert D., Tegeder P.. Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces. Phys. Rev. B , 2017, 96( 14): 144304 https://doi.org/10.1103/PhysRevB.96.144304
52
Stair S., G. Johnston R., C. Bagg T.. Spectral distribution of energy from the sun. J. Res. Natl. Bur. Stand. , 1954, 53( 2): 113 https://doi.org/10.6028/jres.053.014