Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 43601   https://doi.org/10.1007/s11467-022-1183-0
  本期目录
Design of heterojunction with components in different dimensions for electrocatalysis applications
Qingquan Kong1,2, Xuguang An1,2, Jing Zhang1,2, Weitang Yao1,2, Chenghua Sun3()
1. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2. Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
3. Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
 全文: PDF(4531 KB)   HTML
Abstract

Searching for high-performance and cost-effective catalysts is of particular importance for the practical electrocatalysis applications. The heterojunctions with components in different dimensions show unique physical and chemical properties, which can offer large space for rational design of electrocatalysts. In this paper, we firstly reviewed recently related works, and then proposed a few perspectives on exploring heterojunction for electrocatalysis applications.

Key wordsheterojunction    electrocatalysis    multiple dimension
收稿日期: 2022-05-24      出版日期: 2022-07-08
Corresponding Author(s): Chenghua Sun   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 43601.
Qingquan Kong, Xuguang An, Jing Zhang, Weitang Yao, Chenghua Sun. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys. , 2022, 17(4): 43601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1183-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/43601
Fig.1  
Fig.2  
1 Eftekhari A. . Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2017, 42( 16): 11053
https://doi.org/10.1016/j.ijhydene.2017.02.125
2 Eftekhari A. . Tuning the electrocatalysts for oxygen evolution reaction. Mater. Today Energy, 2017, 5 : 37
https://doi.org/10.1016/j.mtener.2017.05.002
3 Yan X. , L. Liu D. , H. Cao H. , Hou F. , Liang J. , X. Dou S. . Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods, 2019, 3( 9): 1800501
https://doi.org/10.1002/smtd.201800501
4 Wang X. , Zheng Y. , Sheng W. , J. Xu Z. , Jaroniec M. , Z. Qiao S. . Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today, 2020, 36 : 125
https://doi.org/10.1016/j.mattod.2019.12.003
5 Song J. Wei C. F. Huang Z. Liu C. Zeng L. Wang X. J. Xu Z., A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev. 49(7), 2196 ( 2020)
6 Voiry D. , S. Shin H. , P. Loh K. , Chhowalla M. . Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem., 2018, 2 : 0105
https://doi.org/10.1038/s41570-017-0105
7 Liu C. , Dai Z. , Zhang J. , Jin Y. , Li D. , Sun C. . Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122( 33): 19051
https://doi.org/10.1021/acs.jpcc.8b05859
8 Shi Y. , Zhou Y. , R. Yang D. , X. Xu W. , Wang C. , B. Wang F. , J. Xu J. , H. Xia X. , Y. Chen H. . Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc., 2017, 139( 43): 15479
https://doi.org/10.1021/jacs.7b08881
9 Zhang J. , Tian X. , Liu M. , Guo H. , Zhou J. , Fang Q. , Liu Z. , Wu Q. , Lou J. . Cobalt modulated Mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc., 2019, 141( 49): 19269
https://doi.org/10.1021/jacs.9b02501
10 Hu J. , Yu L. , Deng J. , Wang Y. , Cheng K. , Ma C. , Zhang Q. , Wen W. , Yu S. , Pan Y. , Yang J. , Ma H. , Qi F. , Wang Y. , Zheng Y. , Chen M. , Huang R. , Zhang S. , Zhao Z. , Mao J. , Meng X. , Ji Q. , Hou G. , Han X. , Bao X. , Wang Y. , Deng D. . Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal., 2021, 4( 3): 242
https://doi.org/10.1038/s41929-021-00584-3
11 Li J. , Zheng G. . One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. (Weinh. ), 2017, 4( 3): 1600380
https://doi.org/10.1002/advs.201600380
12 Zeng Z. , Yan Y. , Chen J. , Zan P. , Tian Q. , Chen P. . Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater., 2019, 29( 2): 1806500
https://doi.org/10.1002/adfm.201806500
13 Li Y. , Ding L. , Guo Y. , Liang Z. , Cui H. , Tian J. . Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl. Mater. Interfaces, 2019, 11( 44): 41440
https://doi.org/10.1021/acsami.9b14985
14 K. Kong X. , M. Peng Z. . Low-dimensional materials for alkaline oxygen evolution electrocatalysis. Mater. Today Chem., 2019, 11 : 119
https://doi.org/10.1016/j.mtchem.2018.10.011
15 Tong Y. , N. Mao H. , L. Xu Y. , Y. Liu J. . Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis. Inorg. Chem. Front., 2019, 6( 8): 2055
https://doi.org/10.1039/C9QI00325H
16 A. Saidi W. . Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett., 2013, 4( 23): 4160
https://doi.org/10.1021/jz402090d
17 Jin Z. , Liu C. , Liu Z. , Han J. , Fang Y. , Han Y. , Niu Y. , Wu Y. , Sun C. , Xu Y. . Rational design of hydroxyl‐rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater., 2020, 10( 22): 2000797
https://doi.org/10.1002/aenm.202000797
18 Tian L. , Li Z. , Wang P. , H. Zhai X. , Wang X. , X. Li T. . Carbon quantum dots for advanced electrocatalysis. J. Energy Chem., 2021, 55 : 279
https://doi.org/10.1016/j.jechem.2020.06.057
19 Tsai C. , Abild-Pedersen F. , K. Nørskov J. . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14( 3): 1381
https://doi.org/10.1021/nl404444k
20 Ju L. , Bie M. , Zhang X. , Chen X. , Kou L. . Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys., 2021, 16( 1): 13201
https://doi.org/10.1007/s11467-020-1002-4
21 Y. Wang Y. , P. Li F. , Wei W. , B. Huang B. , Dai Y. . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16( 1): 13501
https://doi.org/10.1007/s11467-020-0991-3
22 Xiao S. , Li X. , Zhang W. , Xiang Y. , Li T. , Niu X. , S. Chen J. , Yan Q. . Bilateral interfaces in In2Se3− CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15( 8): 13307
https://doi.org/10.1021/acsnano.1c03056
23 A. Ahsan M. , W. He T. , C. Noveron J. , Reuter K. , R. Puente-Santiago A. , Luque R. . Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev., 2022, 15( 3): 812
https://doi.org/10.1039/D1CS00498K
24 Wang T. , Dong A. , Zhang X. , K. Hocking R. , Sun C. . Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17( 2): 23501
https://doi.org/10.1007/s11467-021-1115-4
25 Liu Y. , Deng P. , Wu R. , A. Geioushy R. , Li Y. , Liu Y. , Zhou F. , Li H. , Sun C. . BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys., 2021, 16( 5): 53503
https://doi.org/10.1007/s11467-021-1067-8
26 Li Q. , Qiu S. , Jia B. . Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction. Front. Phys., 2021, 16( 1): 13503
https://doi.org/10.1007/s11467-020-0999-8
27 J. Yin W. , L. Zeng X. , Wen B. , X. Ge Q. , Xu Y. , Teobaldi G. , M. Liu L. . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501
https://doi.org/10.1007/s11467-020-1021-1
28 Luo Y. , Tang L. , Khan U. , Yu Q. , M. Cheng H. , Zou X. , Liu B. . Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun., 2019, 10( 1): 269
https://doi.org/10.1038/s41467-018-07792-9
29 Cui Z. , Du W. , Xiao C. , Li Q. , Sa R. , Sun C. , Ma Z. . Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front. Phys., 2020, 15( 6): 63502
https://doi.org/10.1007/s11467-020-0980-6
30 Yu Q. , Luo Y. , Qiu S. , Li Q. , Cai Z. , Zhang Z. , Liu J. , Sun C. , Liu B. . Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano, 2019, 13( 10): 11874
https://doi.org/10.1021/acsnano.9b05933
31 Chu K. , Liu Y. , Li Y. , Zhang H. , Tian Y. . Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A, 2019, 7( 9): 4389
https://doi.org/10.1039/C9TA00016J
32 Liu H. , Zhang X. , Zhu Y. , Cao B. , Zhu Q. , Zhang P. , Xu B. , Wu F. , Chen R. . Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett., 2019, 11( 1): 65
https://doi.org/10.1007/s40820-019-0296-7
33 Y. Zhang X. , W. Fu W. , Tian W. , Wan J. , Zhang H. , Wang Y. . Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis. J. Mater. Chem. A, 2020, 8( 40): 21173
https://doi.org/10.1039/D0TA07975H
34 Kong Q. An X. Huang L. Wang X. Feng W. Qiu S. Wang Q. Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)
35 Zhang J. , Zhu T. , Wang Y. , Cui J. , Sun J. , Yan J. , Qin Y. , Shu X. , Zhang Y. , Wu J. , S. Tiwary C. , M. Ajayan P. , Wu Y. . Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution. Mater. Today, 2020, 36 : 83
https://doi.org/10.1016/j.mattod.2020.02.006
36 Fu L. , Sun Y. , Wu N. , G. Mendes R. , Chen L. , Xu Z. , Zhang T. , H. Rümmeli M. , Rellinghaus B. , Pohl D. , Zhuang L. , Fu L. . Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10( 2): 2063
https://doi.org/10.1021/acsnano.5b06254
37 R. Puente Santiago A. , He T. , Eraso O. , A. Ahsan M. , N. Nair A. , S. N. Chava V. , Zheng T. , Pilla S. , Fernandez-Delgado O. , Du A. , T. Sreenivasan S. , Echegoyen L. . Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis. J. Am. Chem. Soc., 2020, 142( 42): 17923
https://doi.org/10.1021/jacs.0c08867
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed