Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (6): 63503   https://doi.org/10.1007/s11467-022-1185-y
  本期目录
Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems
Junjie Zeng1, Rui Xue1, Tao Hou1, Yulei Han1,2, Zhenhua Qiao1()
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
2. Department of Physics, Fuzhou University, Fuzhou 350108, China
 全文: PDF(14776 KB)   HTML
Abstract

We study theoretically the construction of topological conducting domain walls with a finite width between AB/BA stacking regions via finite element method in bilayer graphene systems with tunable commensurate twisting angles. We find that the smaller is the twisting angle, the more significant the lattice reconstruction would be, so that sharper domain boundaries declare their existence. We subsequently study the quantum transport properties of topological zero-line modes which can exist because of the said domain boundaries via Green’s function method and Landauer−Büttiker formalism, and find that in scattering regions with tri-intersectional conducting channels, topological zero-line modes both exhibit robust behavior exemplified as the saturated total transmissionGtot ≈ 2e2/h and obey a specific pseudospin-conserving current partition law among the branch transport channels. The former property is unaffected by Aharonov−Bohm effect due to a weak perpendicular magnetic field, but the latter is not. Results from our genuine bilayer hexagonal system suggest a twisting angle aroundθ ≈ 0.1° for those properties to be expected, consistent with the existing experimental reports.

Key wordstwistronics    lattice reconstruction    topological domain wall    zero-line mode    quantum transport
收稿日期: 2021-10-20      出版日期: 2022-07-28
Corresponding Author(s): Zhenhua Qiao   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(6): 63503.
Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems. Front. Phys. , 2022, 17(6): 63503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1185-y
https://academic.hep.com.cn/fop/CN/Y2022/V17/I6/63503
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 43
https://doi.org/10.1038/nature26160
2 C. Po H. , Zou L. , Vishwanath A. , Senthil T. . Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8( 3): 031089
https://doi.org/10.1103/PhysRevX.8.031089
3 Codecido E. , Wang Q. , Koester R. , Che S. , Tian H. , Lv R. , Tran S. , Watanabe K. , Taniguchi T. , Zhang F. , Bockrath M. , N. Lau C. . Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5( 9): eaaw9770
https://doi.org/10.1126/sciadv.aaw9770
4 S. Arora H. , Polski R. , Zhang Y. , Thomson A. , Choi Y. , Kim H. , Lin Z. , Z. Wilson I. , Xu X. , H. Chu J. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583( 7816): 379
https://doi.org/10.1038/s41586-020-2473-8
5 Hao Z. , M. Zimmerman A. , Ledwith P. , Khalaf E. , H. Najafabadi D. , Watanabe K. , Taniguchi T. , Vishwanath A. , Kim P. . Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371( 6534): 1133
https://doi.org/10.1126/science.abg0399
6 Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 80
https://doi.org/10.1038/nature26154
7 J. Calderon M. , Bascones E. . Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater., 2020, 5 : 57
https://doi.org/10.1038/s41535-020-00258-6
8 Zhang C. , P. Chuu C. , Ren X. , Y. Li M. , J. Li L. , Jin C. , Y. Chou M. , K. Shih C. , couplings Interlayer . Moiré patterns, and 2D electronic superlattices in MoS2 /WSe2 hetero-bilayers. Sci. Adv., 2017, 3( 1): e1601459
https://doi.org/10.1126/sciadv.1601459
9 Jin C. , C. Regan E. , Yan A. , I. B. Utama M. , Wang D. , Zhao S. , Qin Y. , Yang S. , Zheng Z. , Shi S. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567( 7746): 76
https://doi.org/10.1038/s41586-019-0976-y
10 L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567( 7746): 66
https://doi.org/10.1038/s41586-019-0957-1
11 Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for Moiré excitons in van der Waals heterostructures. Nature, 2019, 567( 7746): 71
https://doi.org/10.1038/s41586-019-0975-z
12 Liu H. , Zong Y. , Wang P. , Wen H. , Wu H. , Xia J. , Wei Z. . Excitons in two-dimensional van der Waals heterostructures. J. Phys. D Appl. Phys., 2021, 54( 5): 053001
https://doi.org/10.1088/1361-6463/abbf75
13 Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11( 1): 5888
https://doi.org/10.1038/s41467-020-19466-6
14 Brem S. , Linderalv C. , Erhart P. , Malic E. . Tunable phases of Moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20( 12): 8534
https://doi.org/10.1021/acs.nanolett.0c03019
15 Song Z. , Wang Z. , Shi W. , Li G. , Fang C. , A. Bernevig B. . All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett., 2019, 123( 3): 036401
https://doi.org/10.1103/PhysRevLett.123.036401
16 P. Nuckolls K. , Oh M. , Wong D. , Lian B. , Watanabe K. , Taniguchi T. , A. Bernevig B. , Yazdani A. . Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature, 2020, 588( 7839): 610
https://doi.org/10.1038/s41586-020-3028-8
17 Wu S. , Zhang Z. , Watanabe K. , Taniguchi T. , Y. Andrei E. . Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater., 2021, 20( 4): 488
https://doi.org/10.1038/s41563-020-00911-2
18 Stepanov P. Xie M. Taniguchi T. Watanabe K. Lu X. H. MacDonald A. A. Bernevig B. K. Efetov D., Competing zero-field Chern insulators in superconducting twisted bilayer graphene, arXiv: 2012.15126 (2020)
19 Repellin C. , Senthil T. . Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition. Phys. Rev. Res., 2020, 2( 2): 023238
https://doi.org/10.1103/PhysRevResearch.2.023238
20 J. Park M. , Kim Y. , Y. Cho G. , B. Lee S. . Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett., 2019, 123( 21): 216803
https://doi.org/10.1103/PhysRevLett.123.216803
21 Liu B. , Xian L. , Mu H. , Zhao G. , Liu Z. , Rubio A. , F. Wang Z. . Higher-order band topology in twisted Moiré superlattice. Phys. Rev. Lett., 2021, 126( 6): 066401
https://doi.org/10.1103/PhysRevLett.126.066401
22 J. Park M. , Jeon S. , B. Lee S. , C. Park H. , Kim Y. . Higher-order topological corner state tunneling in twisted bilayer graphene. Carbon, 2021, 174 : 260
https://doi.org/10.1016/j.carbon.2020.12.037
23 M. B. Lopes dos Santos J. , M. R. Peres N. , H. Castro Neto A. . Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99( 25): 256802
https://doi.org/10.1103/PhysRevLett.99.256802
24 Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108( 30): 12233
https://doi.org/10.1073/pnas.1108174108
25 Carr S. , Fang S. , Zhu Z. , Kaxiras E. . Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res., 2019, 1( 1): 013001
https://doi.org/10.1103/PhysRevResearch.1.013001
26 Balents L. . General continuum model for twisted bilayer graphene and arbitrary smooth deformations. SciPost Phys., 2019, 7 : 048
https://doi.org/10.21468/SciPostPhys.7.4.048
27 Guinea F. , R. Walet N. . Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters. Phys. Rev. B, 2019, 99( 20): 205134
https://doi.org/10.1103/PhysRevB.99.205134
28 T. Phong V. , J. Mele E. . Obstruction and interference in low-energy models for twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 17): 176404
https://doi.org/10.1103/PhysRevLett.125.176404
29 Koshino M. , N. T. Nam N. . Effective continuum model for relaxed twisted bilayer graphene and Moiré electron−phonon interaction. Phys. Rev. B, 2020, 101( 19): 195425
https://doi.org/10.1103/PhysRevB.101.195425
30 Y. Andrei E. , H. MacDonald A. . Graphene bilayers with a twist. Nat. Mater., 2020, 19( 12): 1265
https://doi.org/10.1038/s41563-020-00840-0
31 N. T. Nam N. , Koshino M. . Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B, 2017, 96( 7): 075311
https://doi.org/10.1103/PhysRevB.96.075311
32 Perebeinos V. , Tersoff J. , Avouris P. . Phonon-mediated interlayer conductance in twisted graphene bilayers. Phys. Rev. Lett., 2012, 109( 23): 236604
https://doi.org/10.1103/PhysRevLett.109.236604
33 Trambly de Laissardière G. , Mayou D. , Magaud L. . Numerical studies of confined states in rotated bilayers of graphene. Phys. Rev. B, 2012, 86( 12): 125413
https://doi.org/10.1103/PhysRevB.86.125413
34 Moon P. , Koshino M. . Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B, 2012, 85( 19): 195458
https://doi.org/10.1103/PhysRevB.85.195458
35 Anđelković M. , Covaci L. , M. Peeters F. . DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder. Phys. Rev. Mater., 2018, 2( 3): 034004
https://doi.org/10.1103/PhysRevMaterials.2.034004
36 C. Po H. , Zou L. , Senthil T. , Vishwanath A. . Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B, 2019, 99( 19): 195455
https://doi.org/10.1103/PhysRevB.99.195455
37 Gargiulo F. , V Yazyev O. . Structural and electronic transformation in low-angle twisted bilayer grapheme. 2D Mater., 2017, 5 : 015019
https://doi.org/10.1088/2053-1583/aa9640
38 Yan W. , Y. He W. , D. Chu Z. , Liu M. , Meng L. , F. Dou R. , Zhang Y. , Liu Z. , C. Nie J. , He L. . Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun., 2013, 4( 1): 2159
https://doi.org/10.1038/ncomms3159
39 Yoo H. , Engelke R. , Carr S. , Fang S. , Zhang K. , Cazeaux P. , H. Sung S. , Hovden R. , W. Tsen A. , Taniguchi T. , Watanabe K. , C. Yi G. , Kim M. , Luskin M. , B. Tadmor E. , Kaxiras E. , Kim P. . Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater., 2019, 18( 5): 448
https://doi.org/10.1038/s41563-019-0346-z
40 Shi H. , Zhan Z. , Qi Z. , Huang K. , van Veen E. , Á. Silva-Guillén J. , Zhang R. , Li P. , Xie K. , Ji H. , I. Katsnelson M. , Yuan S. , Qin S. , Zhang Z. . Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun., 2020, 11( 1): 371
https://doi.org/10.1038/s41467-019-14207-w
41 W. Liu Y. , Su Y. , F. Zhou X. , J. Yin L. , Yan C. , Y. Li S. , Yan W. , Han S. , Q. Fu Z. , Zhang Y. , Yang Q. , N. Ren Y. , He L. . Tunable lattice reconstruction, triangular network of chiral one-dimensional states, and bandwidth of flat bands in magic angle twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 23): 236102
https://doi.org/10.1103/PhysRevLett.125.236102
42 Uchida K. , Furuya S. , I. Iwata J. , Oshiyama A. . Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B, 2014, 90( 15): 155451
https://doi.org/10.1103/PhysRevB.90.155451
43 K Jain S. , Juričić V. , T Barkema G. . Structure of twisted and buckled bilayer grapheme. 2D Mater., 2016, 4 : 015018
https://doi.org/10.1088/2053-1583/4/1/015018
44 Dai S. , Xiang Y. , J. Srolovitz D. . Twisted bilayer graphene: Moiré with a twist. Nano Lett., 2016, 16( 9): 5923
https://doi.org/10.1021/acs.nanolett.6b02870
45 M. van Wijk M. , Schuring A. , I. Katsnelson M. , Fasolino A. . Relaxation of Moiré patterns for slightly misaligned identical lattices: Graphene on graphite. 2D Mater., 2015, 2 : 034010
https://doi.org/10.1088/2053-1583/2/3/034010
46 Goldstein H. Poole C. Safko J., Classical Mechanics, 3rd Ed., Higher Education Press, Beijing, 2005
47 Lin X. , Zhu H. , Ni J. . Pressure-induced gap modulation and topological transitions in twisted bilayer and twisted double bilayer graphene. Phys. Rev. B, 2020, 101( 15): 155405
https://doi.org/10.1103/PhysRevB.101.155405
48 San-Jose P. , Gutierrez-Rubio A. , Sturla M. , Guinea F. . Spontaneous strains and gap in graphene on boron nitride. Phys. Rev. B, 2014, 90( 7): 075428
https://doi.org/10.1103/PhysRevB.90.075428
49 San-Jose P. , Gutierrez-Rubio A. , Sturla M. , Guinea F. . Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B, 2014, 90( 11): 115152
https://doi.org/10.1103/PhysRevB.90.115152
50 Suzuura H. , Ando T. . Phonons and electron−phonon scattering in carbon nanotubes. Phys. Rev. B, 2002, 65( 23): 235412
https://doi.org/10.1103/PhysRevB.65.235412
51 Jackiw R. , Rebbi C. . Solitons with fermion number 1/2. Phys. Rev. D, 1976, 13( 12): 3398
https://doi.org/10.1103/PhysRevD.13.3398
52 Q. Shen S., Topological Insulators: Dirac Equation in Condensed Matter, 2nd Ed., Springer-Verlag GmbH, Singapore, 2017
53 J. Yin L. , Jiang H. , B. Qiao J. , He L. . Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun., 2016, 7( 1): 11760
https://doi.org/10.1038/ncomms11760
54 Hou T. , Cheng G. , K. Tse W. , Zeng C. , Qiao Z. . Topological zero-line modes in folded bilayer graphene. Phys. Rev. B, 2018, 98( 24): 245417
https://doi.org/10.1103/PhysRevB.98.245417
55 Ren Y. , Qiao Z. , Niu Q. . Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79( 6): 066501
https://doi.org/10.1088/0034-4885/79/6/066501
56 T. Zhang Y. , Qiao Z. , F. Sun Q. . Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B, 2013, 87( 23): 235405
https://doi.org/10.1103/PhysRevB.87.235405
57 Ju L. , Shi Z. , Nair N. , Lv Y. , Jin C. , Jr Velasco J. , Ojeda-Aristizabal C. , A. Bechtel H. , C. Martin M. , Zettl A. , Analytis J. , Wang F. . Topological valley transport at bilayer graphene domain walls. Nature, 2015, 520( 7549): 650
https://doi.org/10.1038/nature14364
58 Bi X. , Jung J. , Qiao Z. . Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B, 2015, 92( 23): 235421
https://doi.org/10.1103/PhysRevB.92.235421
59 Li J. , Wang K. , J. McFaul K. , Zern Z. , Ren Y. , Watanabe K. , Taniguchi T. , Qiao Z. , Zhu J. . Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotechnol., 2016, 11( 12): 1060
https://doi.org/10.1038/nnano.2016.158
60 Wang K. , Ren Y. , Deng X. , A. Yang S. , Jung J. , Qiao Z. . Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B, 2017, 95( 24): 245420
https://doi.org/10.1103/PhysRevB.95.245420
61 Ren Y. , Zeng J. , Wang K. , Xu F. , Qiao Z. . Tunable current partition at zero-line intersection of quantum anomalous Hall topologies. Phys. Rev. B, 2017, 96( 15): 155445
https://doi.org/10.1103/PhysRevB.96.155445
62 Wang K. , Hou T. , Ren Y. , Qiao Z. . Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14( 2): 23501
https://doi.org/10.1007/s11467-018-0869-9
63 Hou T. , Ren Y. , Quan Y. , Jung J. , Ren W. , Qiao Z. . Metallic network of topological domain walls. Phys. Rev. B, 2020, 101( 20): 201403
https://doi.org/10.1103/PhysRevB.101.201403
64 Hou T. , Ren Y. , Quan Y. , Jung J. , Ren W. , Qiao Z. . Valley current splitter in minimally twisted bilayer graphene. Phys. Rev. B, 2020, 102( 8): 085433
https://doi.org/10.1103/PhysRevB.102.085433
65 Qiao Z. , Jung J. , Lin C. , Ren Y. , H. MacDonald A. , Niu Q. . Current partition at topological channel intersections. Phys. Rev. Lett., 2014, 112( 20): 206601
https://doi.org/10.1103/PhysRevLett.112.206601
66 Yan Z. , Hou T. , Han Y. , Xu X. , Qiao Z. . Electronic properties of zero-line modes in bilayer graphene: An ab initio study. Phys. Rev. B, 2022, 105( 3): 035425
https://doi.org/10.1103/PhysRevB.105.035425
67 Kim M. , H. Choi J. , H. Lee S. , Watanabe K. , Taniguchi T. , H. Jhi S. , J. Lee H. . Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding. Nat. Phys., 2016, 12( 11): 1022
https://doi.org/10.1038/nphys3804
68 A. Bhatti M., Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations, John Wiley & Sons, 2006
69 Logg A. A. Mardal K. Wells G., Automated Solution of Differential Equations by the Finite Element Method, 1st Ed., Springer-Verlag GmbH, Berlin Heidelberg, 2012
70 C. Zienkiewicz O. L. Taylor R. Z. Zhu J., The Finite Element Method: Its Basis and Fundamentals, 7th Ed., Butterworth-Heinemann Elsevier, Amsterdam, 2013
71 N. Reddy J., An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, 1st Ed., Oxford University Press, Oxford, 2014
72 Logan D., A First Course in the Finite Element Method, 1st Ed., Cengage Learning, Boston, MA, 2017
73 T. Carr S., Moire Patterns in 2D Materials, PHD thesis, Harvard University, 2020
74 V. Zakharchenko K. , I. Katsnelson M. , Fasolino A. . Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett., 2009, 102( 4): 046808
https://doi.org/10.1103/PhysRevLett.102.046808
75 Jung J. , M. DaSilva A. , H. MacDonald A. , Adam S. . Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun., 2015, 6( 1): 6308
https://doi.org/10.1038/ncomms7308
76 M. Popov A. , V. Lebedeva I. , A. Knizhnik A. , E. Lozovik Y. , V. Potapkin B. . Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B, 2011, 84( 4): 045404
https://doi.org/10.1103/PhysRevB.84.045404
77 V. Lebedeva I. , A. Knizhnik A. , M. Popov A. , E. Lozovik Y. , V. Potapkin B. . Interlayer interaction and relative vibrations of bilayer graphene. Phys. Chem. Chem. Phys., 2011, 13( 13): 5687
https://doi.org/10.1039/c0cp02614j
78 C. Slater J. , F. Koster G. . Simplified LCAO method for the periodic potential problem. Phys. Rev., 1954, 94( 6): 1498
https://doi.org/10.1103/PhysRev.94.1498
79 Datta S., Electronic Transport in Mesoscopic Systems, 1st Ed., World Publishing Corporation, Beijing, 2004
80 Datta S., Quantum Transport: Atom to Transistor, 1st Ed., Beijing World Publishing Corporation, Beijing, 2007
81 Qiao Z., Charge and spin transport in two-dimensional mesoscopic systems, PHD thesis, University of Hong Kong, 2009
82 K. Ferry D. M. Goodnick S. Bird J., Transport in Nanostructures, 2nd Ed., Cambridge University Press, Cambridge, 2009
83 Hirose K., Quantum Transport Calculations for Nanosystems, 1st Ed., CRC Press, Boca Raton, 2014
84 D. Ventra M., Electrical Transport in Nanoscale Systems, 1st Ed., Cambridge University Press, Cambridge, 2016
85 Ryndyk D., Theory of Quantum Transport at Nanoscale, 1st Ed., Springer-Verlag GmbH, Switzerland, 2015
86 P. L. Sancho M. , M. L. Sancho J. , Rubio J. . Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14( 5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
87 P. L. Sancho M. , M. L. Sancho J. , M. L. Sancho J. , Rubio J. . Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15( 4): 851
https://doi.org/10.1088/0305-4608/15/4/009
88 Z. Yu Z. , H. Xiong G. , F. Zhang L. . A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach. Front. Phys., 2021, 16( 4): 43201
https://doi.org/10.1007/s11467-021-1051-3
89 Qiao Z. , Wang J. . A variant transfer matrix method suitable for transport through multi-probe systems. Nanotechnology, 2007, 18( 43): 435402
https://doi.org/10.1088/0957-4484/18/43/435402
90 Peierls R. . Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 1933, 80 : 763
https://doi.org/10.1007/BF01342591
91 H. Wannier G. . Dynamics of band electrons in electric and magnetic fields. Rev. Mod. Phys., 1962, 34( 4): 645
https://doi.org/10.1103/RevModPhys.34.645
92 I. Blount E. . Bloch electrons in a magnetic field. Phys. Rev., 1962, 126( 5): 1636
https://doi.org/10.1103/PhysRev.126.1636
93 Kohn W. . Theory of Bloch electrons in a magnetic field: The effective Hamiltonian. Phys. Rev., 1959, 115( 6): 1460
https://doi.org/10.1103/PhysRev.115.1460
94 M. Luttinger J. . The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 1951, 84( 4): 814
https://doi.org/10.1103/PhysRev.84.814
95 R. Hofstadter D. . Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 1976, 14( 6): 2239
https://doi.org/10.1103/PhysRevB.14.2239
96 P. Feynman R. B. Leighton R. Sands M., The Feynman Lectures on Physics, The New Millennium Ed., Basic Books, New York, 2011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed