Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (6): 63601   https://doi.org/10.1007/s11467-022-1190-1
  本期目录
Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies
Mo Cheng1, Junbo Yang1, Xiaohui Li1, Hui Li1, Ruofan Du1, Jianping Shi1(), Jun He2()
1. The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
2. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
 全文: PDF(11622 KB)   HTML
Abstract

Two-dimensional (2D) semiconductors are emerging as promising candidates for the next-generation nanoelectronics. As a type of unique channel materials, 2D semiconducting transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, exhibit great potential for the state-of-the-art field-effect transistors owing to their atomically thin thicknesses, dangling-band free surfaces, and abundant band structures. Even so, the device performances of 2D semiconducting TMDCs are still failing to reach the theoretical values so far, which is attributed to the intrinsic defects, excessive doping, and daunting contacts between electrodes and channels. In this article, we review the up-to-date three strategies for improving the device performances of 2D semiconducting TMDCs: (i) the controllable synthesis of wafer-scale 2D semiconducting TMDCs single crystals to reduce the evolution of grain boundaries, (ii) the ingenious doping of 2D semiconducting TMDCs to modulate the band structures and suppress the impurity scatterings, and (iii) the optimization design of interfacial contacts between electrodes and channels to reduce the Schottky barrier heights and contact resistances. In the end, the challenges regarding the improvement of device performances of 2D semiconducting TMDCs are highlighted, and the further research directions are also proposed. We believe that this review is comprehensive and insightful for downscaling the electronic devices and extending the Moore’s law.

Key words2D semiconductor    transition metal dichalcogenides    wafer-scale single crystal    ingenious doping    interfacial contact    device performance
收稿日期: 2022-05-21      出版日期: 2022-08-01
Corresponding Author(s): Jianping Shi,Jun He   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(6): 63601.
Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys. , 2022, 17(6): 63601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1190-1
https://academic.hep.com.cn/fop/CN/Y2022/V17/I6/63601
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 W. Keyes R. . Physical limits of silicon transistors and circuits. Rep. Prog. Phys., 2005, 68( 12): 2701
https://doi.org/10.1088/0034-4885/68/12/R01
2 Buchanan M. . Generalizing Moore. Nat. Phys., 2016, 12( 3): 200
https://doi.org/10.1038/nphys3685
3 Lloyd S. . Ultimate physical limits to computation. Nature, 2000, 406( 6799): 1047
https://doi.org/10.1038/35023282
4 Liu C. , Chen H. , Wang S. , Liu Q. , G. Jiang Y. , W. Zhang D. , Liu M. , Zhou P. . Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15( 7): 545
https://doi.org/10.1038/s41565-020-0724-3
5 Chhowalla M. , Jena D. , Zhang H. . Two-dimensional semiconductors for transistors. Nat. Rev. Mater., 2016, 1( 11): 16052
https://doi.org/10.1038/natrevmats.2016.52
6 W. Liang B. , H. Chang W. , Y. Lin H. , C. Chen P. , T. Zhang Y. , B. Simbulan K. , S. Li K. , H. Chen J. , H. Kuan C. , W. Lan Y. . High-frequency graphene base hot-electron transistor. ACS Nano, 2021, 15( 4): 6756
https://doi.org/10.1021/acsnano.0c10208
7 Gong Y. , Q. Xu Z. , Li D. , Zhang J. , Aharonovich I. , Zhang Y. . Two-dimensional hexagonal boron nitride for building next-generation energy-efficient devices. ACS Energy Lett., 2021, 6( 3): 985
https://doi.org/10.1021/acsenergylett.0c02427
8 R. Glavin N. , Muratore C. , L. Jespersen M. , Hu J. , T. Hagerty P. , M. Hilton A. , T. Blake A. , A. Grabowski C. , F. Durstock M. , E. McConney M. , M. Hilgefort D. , S. Fisher T. , A. Voevodin A. . Amorphous boron nitride: A universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater., 2016, 26( 16): 2640
https://doi.org/10.1002/adfm.201505455
9 Shi J. , Hong M. , Zhang Z. , Ji Q. , Zhang Y. . Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coord. Chem. Rev., 2018, 376( 1): 1
https://doi.org/10.1016/j.ccr.2018.07.019
10 Wang P. , Huan Y. , Yang P. , Cheng M. , Shi J. , Zhang Y. . Controlled syntheses and multifunctional applications of two-dimensional metallic transition metal dichalcogenides. Acc. Mater. Res., 2021, 2( 9): 751
https://doi.org/10.1021/accountsmr.1c00092
11 Zhang Y. , W. Tan Y. , L. Stormer H. , Kim P. . Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438( 7065): 201
https://doi.org/10.1038/nature04235
12 S. Novoselov K. , Jiang Z. , Zhang Y. , V. Morozov S. , L. Stormer H. , Zeitler U. , C. Maan J. , S. Boebinger G. , Kim P. , K. Geim A. . Room-temperature quantum Hall effect in graphene. Science, 2007, 315( 5817): 1379
https://doi.org/10.1126/science.1137201
13 Du X. , Skachko I. , Barker A. , Y. Andrei E. . Approaching ballistic transport in suspended graphene. Nat. Nanotechnol., 2008, 3( 8): 491
https://doi.org/10.1038/nnano.2008.199
14 Seol Jae H. , Jo I. , Moore Arden L. , Lindsay L. , Aitken Zachary H. , Pettes Michael T. , Li X. , Yao Z. , Huang R. , Broido D. , Mingo N. , R. Rodney S. , Shi L. . Two-dimensional phonon transport in supported graphene. Science, 2010, 328( 5975): 213
https://doi.org/10.1126/science.1184014
15 R. Nair R. , Blake P. , N. Grigorenko A. , S. Novoselov K. , J. Booth T. , Stauber T. , M. R. Peres N. , K. Geim A. . Fine structure constant defines visual transparency of graphene. Science, 2008, 320( 5881): 1308
https://doi.org/10.1126/science.1156965
16 Ju L. , Bie M. , Zhang X. , Chen X. , Kou L. . Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys., 2021, 16( 1): 13201
https://doi.org/10.1007/s11467-020-1002-4
17 Akinwande D. , Huyghebaert C. , H. Wang C. , I. Serna M. , Goossens S. , J. Li L. , S. P. Wong H. , H. L. Koppens F. . Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573( 7775): 507
https://doi.org/10.1038/s41586-019-1573-9
18 H. Wang Q. , Kalantar-Zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7( 11): 699
https://doi.org/10.1038/nnano.2012.193
19 Tan C. , Lai Z. , Zhang H. . Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater., 2017, 29( 37): 1701392
https://doi.org/10.1002/adma.201701392
20 Tan C. , Cao X. , J. Wu X. , He Q. , Yang J. , Zhang X. , Chen J. , Zhao W. , Han S. , H. Nam G. , Sindoro M. , Zhang H. . Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117( 9): 6225
https://doi.org/10.1021/acs.chemrev.6b00558
21 Liu Y. , Duan X. , J. Shin H. , Park S. , Huang Y. , Duan X. . Promises and prospects of two-dimensional transistors. Nature, 2021, 591( 7848): 43
https://doi.org/10.1038/s41586-021-03339-z
22 Jing X. , Illarionov Y. , Yalon E. , Zhou P. , Grasser T. , Shi Y. , Lanza M. . Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater., 2020, 30( 18): 1901971
https://doi.org/10.1002/adfm.201901971
23 Zeng Q. , Wang H. , Fu W. , Gong Y. , Zhou W. , M. Ajayan P. , Lou J. , Liu Z. . Band engineering for novel two-dimensional atomic layers. Small, 2015, 11( 16): 1868
https://doi.org/10.1002/smll.201402380
24 Bao X. , Ou Q. , Q. Xu Z. , Zhang Y. , Bao Q. , Zhang H. . Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol., 2018, 3( 11): 1800072
https://doi.org/10.1002/admt.201800072
25 Cui X. , H. Lee G. , D. Kim Y. , Arefe G. , Y. Huang P. , H. Lee C. , A. Chenet D. , Zhang X. , Wang L. , Ye F. , Pizzocchero F. , S. Jessen B. , Watanabe K. , Taniguchi T. , A. Muller D. , Low T. , Kim P. , Hone J. . Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol., 2015, 10( 6): 534
https://doi.org/10.1038/nnano.2015.70
26 Radisavljevic B. , Radenovic A. , Brivio J. , Giacometti V. , Kis A. . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6( 3): 147
https://doi.org/10.1038/nnano.2010.279
27 Kappera R. , Voiry D. , E. Yalcin S. , Branch B. , Gupta G. , D. Mohite A. , Chhowalla M. . Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater., 2014, 13( 12): 1128
https://doi.org/10.1038/nmat4080
28 Liu Y. , Guo J. , Wu Y. , Zhu E. , O. Weiss N. , He Q. , Wu H. , C. Cheng H. , Xu Y. , Shakir I. , Huang Y. , Duan X. . Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett., 2016, 16( 10): 6337
https://doi.org/10.1021/acs.nanolett.6b02713
29 Hu Z. , Wu Z. , Han C. , He J. , Ni Z. , Chen W. . Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev., 2018, 47( 9): 3100
https://doi.org/10.1039/C8CS00024G
30 Najmaei S. , Liu Z. , Zhou W. , Zou X. , Shi G. , Lei S. , I. Yakobson B. , C. Idrobo J. , M. Ajayan P. , Lou J. . Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater., 2013, 12( 8): 754
https://doi.org/10.1038/nmat3673
31 Rhodes D. , H. Chae S. , Ribeiro-Palau R. , Hone J. . Disorder in van der Waals heterostructures of 2D materials. Nat. Mater., 2019, 18( 6): 541
https://doi.org/10.1038/s41563-019-0366-8
32 Qiu H. , Xu T. , Wang Z. , Ren W. , Nan H. , Ni Z. , Chen Q. , Yuan S. , Miao F. , Song F. , Long G. , Shi Y. , Sun L. , Wang J. , Wang X. . Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun., 2013, 4( 1): 2642
https://doi.org/10.1038/ncomms3642
33 H. Ryu S. , Huh M. , Y. Park D. , Jozwiak C. , Rotenberg E. , Bostwick A. , S. Kim K. . Pseudogap in a crystalline insulator doped by disordered metals. Nature, 2021, 596( 7870): 68
https://doi.org/10.1038/s41586-021-03683-0
34 Suh J. , L. Tan T. , Zhao W. , Park J. , Y. Lin D. , E. Park T. , Kim J. , Jin C. , Saigal N. , Ghosh S. , M. Wong Z. , Chen Y. , Wang F. , Walukiewicz W. , Eda G. , Wu J. . Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun., 2018, 9( 1): 199
https://doi.org/10.1038/s41467-017-02631-9
35 Kochat V. , Apte A. , A. Hachtel J. , Kumazoe H. , Krishnamoorthy A. , Susarla S. , C. Idrobo J. , Shimojo F. , Vashishta P. , Kalia R. , Nakano A. , S. Tiwary C. , M. Ajayan P. . Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater., 2017, 29( 43): 1703754
https://doi.org/10.1002/adma.201703754
36 Fu S. , Kang K. , Shayan K. , Yoshimura A. , Dadras S. , Wang X. , Zhang L. , Chen S. , Liu N. , Jindal A. , Li X. , N. Pasupathy A. , N. Vamivakas A. , Meunier V. , Strauf S. , H. Yang E. . Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun., 2020, 11( 1): 2034
https://doi.org/10.1038/s41467-020-15877-7
37 M. Hus S. , Ge R. , A. Chen P. , Liang L. , E. Donnelly G. , Ko W. , Huang F. , H. Chiang M. , P. Li A. , Akinwande D. . Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol., 2021, 16( 1): 58
https://doi.org/10.1038/s41565-020-00789-w
38 Wang S. , Robertson A. , H. Warner J. . Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev., 2018, 47( 17): 6764
https://doi.org/10.1039/C8CS00236C
39 Y. Noh J. , Kim H. , Park M. , S. Kim Y. . Deep-to-shallow level transition of Re and Nb dopants in monolayer MoS2 with dielectric environments. Phys. Rev. B, 2015, 92( 11): 115431
https://doi.org/10.1103/PhysRevB.92.115431
40 Chen S. , Wang S. , Wang C. , Wang Z. , Liu Q. . Latest advance on seamless metal−semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42 : 101372
https://doi.org/10.1016/j.nantod.2021.101372
41 Wang Y. , Chhowalla M. . Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys., 2022, 4( 2): 101
https://doi.org/10.1038/s42254-021-00389-0
42 Zhang X. , Liu B. , Gao L. , Yu H. , Liu X. , Du J. , Xiao J. , Liu Y. , Gu L. , Liao Q. , Kang Z. , Zhang Z. , Zhang Y. . Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun., 2021, 12( 1): 1522
https://doi.org/10.1038/s41467-021-21861-6
43 Zheng X. , Calò A. , Albisetti E. , Liu X. , S. M. Alharbi A. , Arefe G. , Liu X. , Spieser M. , J. Yoo W. , Taniguchi T. , Watanabe K. , Aruta C. , Ciarrocchi A. , Kis A. , S. Lee B. , Lipson M. , Hone J. , Shahrjerdi D. , Riedo E. . Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron., 2019, 2( 1): 17
https://doi.org/10.1038/s41928-018-0191-0
44 Manzeli S. Ovchinnikov D. Pasquier D. V. Yazyev O. Kis A., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 ( 2017)
45 Liu Y. , O. Weiss N. , Duan X. , C. Cheng H. , Huang Y. , Duan X. . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1( 9): 16042
https://doi.org/10.1038/natrevmats.2016.42
46 Fiori G. , Bonaccorso F. , Iannaccone G. , Palacios T. , Neumaier D. , Seabaugh A. , K. Banerjee S. , Colombo L. . Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9( 10): 768
https://doi.org/10.1038/nnano.2014.207
47 M. van der Zande A. , Y. Huang P. , A. Chenet D. , C. Berkelbach T. , M. You Y. , H. Lee G. , F. Heinz T. , R. Reichman D. , A. Muller D. , C. Hone J. . Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater., 2013, 12( 6): 554
https://doi.org/10.1038/nmat3633
48 H. Ly T. , J. Perello D. , Zhao J. , M. Deng Q. , Kim H. , H. Han G. , H. Chae S. , Y. Jeong H. , H. Lee Y. . Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nat. Commun., 2016, 7( 1): 10426
https://doi.org/10.1038/ncomms10426
49 G. Ji H. , C. Lin Y. , Nagashio K. , Maruyama M. , Solís-Fernández P. , Sukma Aji A. , Panchal V. , Okada S. , Suenaga K. , Ago H. . Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater., 2018, 30( 2): 403
https://doi.org/10.1021/acs.chemmater.7b04149
50 Wu T. , Zhang X. , Yuan Q. , Xue J. , Lu G. , Liu Z. , Wang H. , Wang H. , Ding F. , Yu Q. , Xie X. , Jiang M. . Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu−Ni alloys. Nat. Mater., 2016, 15( 1): 43
https://doi.org/10.1038/nmat4477
51 H. Lee J. , K. Lee E. , J. Joo W. , Jang Y. , S. Kim B. , Y. Lim J. , H. Choi S. , J. Ahn S. , R. Ahn J. , H. Park M. , W. Yang C. , L. Choi B. , W. Hwang S. , Whang D. . Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science, 2014, 344( 6181): 286
https://doi.org/10.1126/science.1252268
52 Huang M. , V. Bakharev P. , J. Wang Z. , Biswal M. , Yang Z. , Jin S. , Wang B. , J. Park H. , Li Y. , Qu D. , Kwon Y. , Chen X. , H. Lee S. , G. Willinger M. , J. Yoo W. , Lee Z. , S. Ruoff R. . Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol., 2020, 15( 4): 289
https://doi.org/10.1038/s41565-019-0622-8
53 Wang M. , Huang M. , Luo D. , Li Y. , Choe M. , K. Seong W. , Kim M. , Jin S. , Wang M. , Chatterjee S. , Kwon Y. , Lee Z. , S. Ruoff R. . Single-crystal, large-area, fold-free monolayer graphene. Nature, 2021, 596( 7873): 519
https://doi.org/10.1038/s41586-021-03753-3
54 S. Lee J. , H. Choi S. , J. Yun S. , I. Kim Y. , Boandoh S. , H. Park J. , G. Shin B. , Ko H. , H. Lee S. , M. Kim Y. , H. Lee Y. , K. Kim K. , M. Kim S. . Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362( 6416): 817
https://doi.org/10.1126/science.aau2132
55 Wang L. , Xu X. , Zhang L. , Qiao R. , Wu M. , Wang Z. , Zhang S. , Liang J. , Zhang Z. , Zhang Z. , Chen W. , Xie X. , Zong J. , Shan Y. , Guo Y. , Willinger M. , Wu H. , Li Q. , Wang W. , Gao P. , Wu S. , Zhang Y. , Jiang Y. , Yu D. , Wang E. , Bai X. , J. Wang Z. , Ding F. , Liu K. . Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570( 7759): 91
https://doi.org/10.1038/s41586-019-1226-z
56 A. Chen T. , P. Chuu C. , C. Tseng C. , K. Wen C. , S. P. Wong H. , Pan S. , Li R. , A. Chao T. , C. Chueh W. , Zhang Y. , Fu Q. , I. Yakobson B. , H. Chang W. , J. Li L. . Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature, 2020, 579( 7798): 219
https://doi.org/10.1038/s41586-020-2009-2
57 Zhang L. , Dong J. , Ding F. . Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev., 2021, 121( 11): 6321
https://doi.org/10.1021/acs.chemrev.0c01191
58 Xu X. , Pan Y. , Liu S. , Han B. , Gu P. , Li S. , Xu W. , Peng Y. , Han Z. , Chen J. , Gao P. , Ye Y. . Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science, 2021, 372( 6538): 195
https://doi.org/10.1126/science.abf5825
59 Cho S. , Kim S. , H. Kim J. , Zhao J. , Seok J. , H. Keum D. , Baik J. , H. Choe D. , J. Chang K. , Suenaga K. , W. Kim S. , H. Lee Y. , Yang H. . Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349( 6248): 625
https://doi.org/10.1126/science.aab3175
60 H. Sung J. , Heo H. , Si S. , H. Kim Y. , R. Noh H. , Song K. , Kim J. , S. Lee C. , Y. Seo S. , H. Kim D. , K. Kim H. , W. Yeom H. , H. Kim T. , Y. Choi S. , S. Kim J. , H. Jo M. . Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol., 2017, 12( 11): 1064
https://doi.org/10.1038/nnano.2017.161
61 Chen L. , Liu B. , Ge M. , Ma Y. , N. Abbas A. , Zhou C. . Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano, 2015, 9( 8): 8368
https://doi.org/10.1021/acsnano.5b03043
62 Li T. , Guo W. , Ma L. , Li W. , Yu Z. , Han Z. , Gao S. , Liu L. , Fan D. , Wang Z. , Yang Y. , Lin W. , Luo Z. , Chen X. , Dai N. , Tu X. , Pan D. , Yao Y. , Wang P. , Nie Y. , Wang J. , Shi Y. , Wang X. . Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol., 2021, 16( 11): 1201
https://doi.org/10.1038/s41565-021-00963-8
63 Yu H. , Liao M. , Zhao W. , Liu G. , Zhou X. , Wei Z. , Xu X. , Liu K. , Hu Z. , Deng K. , Zhou S. , A. Shi J. , Gu L. , Shen C. , Zhang T. , Du L. , Xie L. , Zhu J. , Chen W. , Yang R. , Shi D. , Zhang G. . Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11( 12): 12001
https://doi.org/10.1021/acsnano.7b03819
64 K. H. Smithe K. , V. Suryavanshi S. , Muñoz Rojo M. , D. Tedjarati A. , Pop E. . Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11( 8): 8456
https://doi.org/10.1021/acsnano.7b04100
65 Dong R. , Gong X. , Yang J. , Sun Y. , Ma L. , Wang J. . The intrinsic thermodynamic difficulty and a step-guided mechanism for the epitaxial growth of uniform multilayer MoS2 with controllable thickness. Adv. Mater., 2022, 34( 20): 2201402
https://doi.org/10.1002/adma.202201402
66 Liu L. , Li T. , Ma L. , Li W. , Gao S. , Sun W. , Dong R. , Zou X. , Fan D. , Shao L. , Gu C. , Dai N. , Yu Z. , Chen X. , Tu X. , Nie Y. , Wang P. , Wang J. , Shi Y. , Wang X. . Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605( 7908): 69
https://doi.org/10.1038/s41586-022-04523-5
67 Wang J. , Xu X. , Cheng T. , Gu L. , Qiao R. , Liang Z. , Ding D. , Hong H. , Zheng P. , Zhang Z. , Zhang Z. , Zhang S. , Cui G. , Chang C. , Huang C. , Qi J. , Liang J. , Liu C. , Zuo Y. , Xue G. , Fang X. , Tian J. , Wu M. , Guo Y. , Yao Z. , Jiao Q. , Liu L. , Gao P. , Li Q. , Yang R. , Zhang G. , Tang Z. , Yu D. , Wang E. , Lu J. , Zhao Y. , Wu S. , Ding F. , Liu K. . Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17( 1): 33
https://doi.org/10.1038/s41565-021-01004-0
68 Yang P. , Zhang S. , Pan S. , Tang B. , Liang Y. , Zhao X. , Zhang Z. , Shi J. , Huan Y. , Shi Y. , J. Pennycook S. , Ren Z. , Zhang G. , Chen Q. , Zou X. , Liu Z. , Zhang Y. . Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14( 4): 5036
https://doi.org/10.1021/acsnano.0c01478
69 Aljarb A. , Cao Z. , Tang H. , Huang J. , Li M. , Hu W. , Cavallo L. , Li L. . Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano, 2017, 11( 9): 9215
https://doi.org/10.1021/acsnano.7b04323
70 Chubarov M. , H. Choudhury T. , R. Hickey D. , Bachu S. , Zhang T. , Sebastian A. , Bansal A. , Zhu H. , Trainor N. , Das S. , Terrones M. , Alem N. , M. Redwing J. . Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano, 2021, 15( 2): 2532
https://doi.org/10.1021/acsnano.0c06750
71 Shinada T. , Okamoto S. , Kobayashi T. , Ohdomari I. . Enhancing semiconductor device performance using ordered dopant arrays. Nature, 2005, 437( 7062): 1128
https://doi.org/10.1038/nature04086
72 Y. Seo S. , Moon G. , F. N. Okello O. , Y. Park M. , Han C. , Cha S. , Choi H. , W. Yeom H. , Y. Choi S. , Park J. , H. Jo M. . Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron., 2021, 4( 1): 38
https://doi.org/10.1038/s41928-020-00512-6
73 H. Chen Y. , R. Tamming R. , Chen K. , Zhang Z. , Liu F. , Zhang Y. , M. Hodgkiss J. , J. Blaikie R. , Ding B. , Qiu M. . Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat. Commun., 2021, 12( 1): 4332
https://doi.org/10.1038/s41467-021-24667-8
74 Zhou J. , Zhu H. , Song Q. , Ding Z. , Mao J. , Ren Z. , Chen G. . Mobility enhancement in heavily doped semiconductors via electron cloaking. Nat. Commun., 2022, 13( 1): 2482
https://doi.org/10.1038/s41467-022-29958-2
75 Li B. Xing T. Zhong M. Huang L. Lei N. Zhang J. Li J. Wei Z., A two-dimensional Fe-doped SnS2 magnetic semiconductor , Nat. Commun. 8(1), 1958 ( 2017)
76 Zhou J. , Lin J. , Sims H. , Jiang C. , Cong C. , A. Brehm J. , Zhang Z. , Niu L. , Chen Y. , Zhou Y. , Wang Y. , Liu F. , Zhu C. , Yu T. , Suenaga K. , Mishra R. , T. Pantelides S. , G. Zhu Z. , Gao W. , Liu Z. , Zhou W. . Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater., 2020, 32( 11): 1906536
https://doi.org/10.1002/adma.201906536
77 Li Q. , Zhao X. , Deng L. , Shi Z. , Liu S. , Wei Q. , Zhang L. , Cheng Y. , Zhang L. , Lu H. , Gao W. , Huang W. , W. Qiu C. , Xiang G. , J. Pennycook S. , Xiong Q. , Loh K. , Peng B. . Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano, 2020, 14( 4): 4636
https://doi.org/10.1021/acsnano.0c00291
78 Zhang K. , Feng S. , Wang J. , Azcatl A. , Lu N. , Addou R. , Wang N. , Zhou C. , Lerach J. , Bojan V. , J. Kim M. , Q. Chen L. , M. Wallace R. , Terrones M. , Zhu J. , A. Robinson J. . Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett., 2015, 15( 10): 6586
https://doi.org/10.1021/acs.nanolett.5b02315
79 Li H. , Cheng M. , Wang P. , Du R. , Song L. , He J. , Shi J. . Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping. Adv. Mater., 2022, 34( 18): 2200885
https://doi.org/10.1002/adma.202200885
80 Lee D. , J. Lee J. , S. Kim Y. , H. Kim Y. , C. Kim J. , Huh W. , Lee J. , Park S. , Y. Jeong H. , D. Kim Y. , H. Lee C. . Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron., 2021, 4( 9): 664
https://doi.org/10.1038/s41928-021-00641-6
81 Wang Y. , Xiao J. , Zhu H. , Li Y. , Alsaid Y. , Y. Fong K. , Zhou Y. , Wang S. , Shi W. , Wang Y. , Zettl A. , J. Reed E. , Zhang X. . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550( 7677): 487
https://doi.org/10.1038/nature24043
82 Song S. , Sim Y. , Y. Kim S. , H. Kim J. , Oh I. , Na W. , H. Lee D. , Wang J. , Yan S. , Liu Y. , Kwak J. , H. Chen J. , Cheong H. , W. Yoo J. , Lee Z. , Y. Kwon S. . Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal−semiconductor contacts at the Schottky−Mott limit. Nat. Electron., 2020, 3( 4): 207
https://doi.org/10.1038/s41928-020-0396-x
83 Jung Y. , S. Choi M. , Nipane A. , Borah A. , Kim B. , Zangiabadi A. , Taniguchi T. , Watanabe K. , J. Yoo W. , Hone J. , T. Teherani J. . Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron., 2019, 2( 5): 187
https://doi.org/10.1038/s41928-019-0245-y
84 Liu W. . Transition metal ditellurides make for better 2D contacts. Nat. Electron., 2020, 3( 4): 187
https://doi.org/10.1038/s41928-020-0403-2
85 Allain A. , Kang J. , Banerjee K. , Kis A. . Electrical contacts to two-dimensional semiconductors. Nat. Mater., 2015, 14( 12): 1195
https://doi.org/10.1038/nmat4452
86 T. Tung R. . The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev., 2014, 1( 1): 011304
https://doi.org/10.1063/1.4858400
87 Liu X. , S. Choi M. , Hwang E. , J. Yoo W. , Sun J. . Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater., 2022, 34( 15): 2108425
https://doi.org/10.1002/adma.202108425
88 Liu Y. , Guo J. , Zhu E. , Liao L. , J. Lee S. , Ding M. , Shakir I. , Gambin V. , Huang Y. , Duan X. . Approaching the Schottky−Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557( 7707): 696
https://doi.org/10.1038/s41586-018-0129-8
89 Kwon G. , H. Choi Y. , Lee H. , S. Kim H. , Jeong J. , Jeong K. , Baik M. , Kwon H. , Ahn J. , Lee E. , H. Cho M. . Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron., 2022, 5( 4): 241
https://doi.org/10.1038/s41928-022-00746-6
90 C. Shen P. , Su C. , Lin Y. , S. Chou A. , C. Cheng C. , H. Park J. , H. Chiu M. , Y. Lu A. , L. Tang H. , M. Tavakoli M. , Pitner G. , Ji X. , Cai Z. , Mao N. , Wang J. , Tung V. , Li J. , Bokor J. , Zettl A. , I. Wu C. , Palacios T. , J. Li L. , Kong J. . Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593( 7858): 211
https://doi.org/10.1038/s41586-021-03472-9
91 Shi J. , Wang X. , Zhang S. , Xiao L. , Huan Y. , Gong Y. , Zhang Z. , Li Y. , Zhou X. , Hong M. , Fang Q. , Zhang Q. , Liu X. , Gu L. , Liu Z. , Zhang Y. . Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun., 2017, 8( 1): 958
https://doi.org/10.1038/s41467-017-01089-z
92 Shi J. , Chen X. , Zhao L. , Gong Y. , Hong M. , Huan Y. , Zhang Z. , Yang P. , Li Y. , Zhang Q. , Zhang Q. , Gu L. , Chen H. , Wang J. , Deng S. , Xu N. , Zhang Y. . Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater., 2021, 30( 44): 1804616
https://doi.org/10.1002/adma.201804616
93 Ge J. , Luo T. , Lin Z. , Shi J. , Liu Y. , Wang P. , Zhang Y. , Duan W. , Wang J. . Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater., 2018, 33( 4): 2005465
https://doi.org/10.1002/adma.202005465
94 Bonilla M. , Kolekar S. , Ma Y. , C. Diaz H. , Kalappattil V. , Das R. , Eggers T. , R. Gutierrez H. , H. Phan M. , Batzill M. . Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol., 2018, 13( 4): 289
https://doi.org/10.1038/s41565-018-0063-9
95 Zhao K. , Lin H. , Xiao X. , Huang W. , Yao W. , Yan M. , Xing Y. , Zhang Q. , X. Li Z. , Hoshino S. , Wang J. , Zhou S. , Gu L. , S. Bahramy M. , Yao H. , Nagaosa N. , K. Xue Q. , T. Law K. , Chen X. , H. Ji S. . Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nat. Phys., 2019, 15( 9): 904
https://doi.org/10.1038/s41567-019-0570-0
96 Xing Y. , Yang P. , Ge J. , Yan J. , Luo J. , Ji H. , Yang Z. , Li Y. , Wang Z. , Liu Y. , Yang F. , Qiu P. , Xi C. , Tian M. , Liu Y. , Lin X. , Wang J. . Extrinsic and intrinsic anomalous metallic states in transition metal dichalcogenide Ising superconductors. Nano Lett., 2021, 21( 18): 7486
https://doi.org/10.1021/acs.nanolett.1c01426
97 Wang Z. , Y. Sun Y. , Abdelwahab I. , Cao L. , Yu W. , Ju H. , Zhu J. , Fu W. , Chu L. , Xu H. , P. Loh K. . Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano, 2018, 12( 12): 12619
https://doi.org/10.1021/acsnano.8b07379
98 Hall J. , Ehlen N. , Berges J. , van Loon E. , van Efferen C. , Murray C. , Rösner M. , Li J. , V. Senkovskiy B. , Hell M. , Rolf M. , Heider T. , C. Asensio M. , Avila J. , Plucinski L. , Wehling T. , Grüneis A. , Michely T. . Environmental control of charge density wave order in monolayer 2H-TaS2. ACS Nano, 2019, 13( 9): 10210
https://doi.org/10.1021/acsnano.9b03419
99 Zhu C. , Chen Y. , Liu F. , Zheng S. , Li X. , Chaturvedi A. , Zhou J. , Fu Q. , He Y. , Zeng Q. , J. Fan H. , Zhang H. , J. Liu W. , Yu T. , Liu Z. . Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano, 2018, 12( 11): 11203
https://doi.org/10.1021/acsnano.8b05756
100 Bekaert J. , Khestanova E. , G. Hopkinson D. , Birkbeck J. , Clark N. , Zhu M. , A. Bandurin D. , Gorbachev R. , Fairclough S. , Zou Y. , Hamer M. , J. Terry D. , J. P. Peters J. , M. Sanchez A. , Partoens B. , J. Haigh S. , V. Milošević M. , V. Grigorieva I. . Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett., 2020, 20( 5): 3808
https://doi.org/10.1021/acs.nanolett.0c00871
101 Chen Y. , Wu L. , Xu H. , Cong C. , Li S. , Feng S. , Zhang H. , Zou C. , Shang J. , A. Yang S. , P. Loh K. , Huang W. , Yu T. . Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv. Mater., 2020, 32( 45): 2003746
https://doi.org/10.1002/adma.202003746
102 Dong Q. , Pan J. , Li S. , Fang Y. , Lin T. , Liu S. , Liu B. , Li Q. , Huang F. , Liu B. . Record-high superconductivity in transition metal dichalcogenides emerged in compressed 2H-TaS2. Adv. Mater., 2022, 34( 9): 2103168
https://doi.org/10.1002/adma.202103168
103 Zhang W. , Zhang L. , K. J. Wong P. , Yuan J. , Vinai G. , Torelli P. , van der Laan G. , P. Feng Y. , T. S. Wee A. . Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano, 2019, 13( 8): 8997
https://doi.org/10.1021/acsnano.9b02996
104 Liu H. , Bao L. , Zhou Z. , Che B. , Zhang R. , Bian C. , Ma R. , Wu L. , Yang H. , Li J. , Gu C. , M. Shen C. , Du S. , J. Gao H. . Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett., 2019, 19( 7): 4551
https://doi.org/10.1021/acs.nanolett.9b01412
105 Chua R. , Henke J. , Saha S. , Huang Y. , Gou J. , He X. , Das T. , van Wezel J. , Soumyanarayanan A. , T. S. Wee A. . Coexisting charge-ordered states with distinct driving mechanisms in monolayer VSe2. ACS Nano, 2022, 16( 1): 783
https://doi.org/10.1021/acsnano.1c08304
106 Yu W. , Li J. , S. Herng T. , Wang Z. , Zhao X. , Chi X. , Fu W. , Abdelwahab I. , Zhou J. , Dan J. , Chen Z. , Chen Z. , Li Z. , Lu J. , J. Pennycook S. , P. Feng Y. , Ding J. , P. Loh K. . Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater., 2019, 31( 40): 1903779
https://doi.org/10.1002/adma.201903779
107 Wen Y. , Liu Z. , Zhang Y. , Xia C. , Zhai B. , Zhang X. , Zhai G. , Shen C. , He P. , Cheng R. , Yin L. , Yao Y. , Getaye Sendeku M. , Wang Z. , Ye X. , Liu C. , Jiang C. , Shan C. , Long Y. , He J. . Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20( 5): 3130
https://doi.org/10.1021/acs.nanolett.9b05128
108 Zhang Y. , Chu J. , Yin L. , A. Shifa T. , Cheng Z. , Cheng R. , Wang F. , Wen Y. , Zhan X. , Wang Z. , He J. . Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater., 2019, 31( 19): 1900056
https://doi.org/10.1002/adma.201900056
109 Zhang X. , Luo Z. , Yu P. , Cai Y. , Du Y. , Wu D. , Gao S. , Tan C. , Li Z. , Ren M. , Osipowicz T. , Chen S. , Jiang Z. , Li J. , Huang Y. , Yang J. , Chen Y. , Y. Ang C. , Zhao Y. , Wang P. , Song L. , Wu X. , Liu Z. , Borgna A. , Zhang H. . Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal., 2018, 1( 6): 460
https://doi.org/10.1038/s41929-018-0072-y
110 Liu Y. , Wu J. , P. Hackenberg K. , Zhang J. , M. Wang Y. , Yang Y. , Keyshar K. , Gu J. , Ogitsu T. , Vajtai R. , Lou J. , M. Ajayan P. , C. Wood B. , I. Yakobson B. . Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy, 2017, 2( 9): 17127
https://doi.org/10.1038/nenergy.2017.127
111 Yang J. , R. Mohmad A. , Wang Y. , Fullon R. , Song X. , Zhao F. , Bozkurt I. , Augustin M. , J. G. Santos E. , S. Shin H. , Zhang W. , Voiry D. , Y. Jeong H. , Chhowalla M. . Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater., 2019, 18( 12): 1309
https://doi.org/10.1038/s41563-019-0463-8
112 Yan M. , Pan X. , Wang P. , Chen F. , He L. , Jiang G. , Wang J. , Z. Liu J. , Xu X. , Liao X. , Yang J. , Mai L. . Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett., 2017, 17( 7): 4109
https://doi.org/10.1021/acs.nanolett.7b00855
113 L. Liu Z. , Lei B. , L. Zhu Z. , Tao L. , Qi J. , L. Bao D. , Wu X. , Huang L. , Y. Zhang Y. , Lin X. , L. Wang Y. , Du S. , T. Pantelides S. , J. Gao H. . Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett., 2019, 19( 8): 4897
https://doi.org/10.1021/acs.nanolett.9b00889
114 S. Kwon I. , H. Kwak I. , T. Debela T. , Y. Kim J. , J. Yoo S. , G. Kim J. , Park J. , S. Kang H. . Phase-transition Mo1–xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano, 2021, 15( 9): 14672
https://doi.org/10.1021/acsnano.1c04453
115 Huan Y. , Shi J. , Zou X. , Gong Y. , Xie C. , Yang Z. , Zhang Z. , Gao Y. , Shi Y. , Li M. , Yang P. , Jiang S. , Hong M. , Gu L. , Zhang Q. , Yan X. , Zhang Y. . Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc., 2019, 141( 47): 18694
https://doi.org/10.1021/jacs.9b06044
116 Yang C. , Feng J. , Lv F. , Zhou J. , Lin C. , Wang K. , Zhang Y. , Yang Y. , Wang W. , Li J. , Guo S. . Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater., 2018, 30( 27): 1800036
https://doi.org/10.1002/adma.201800036
117 Ming F. , Liang H. , Lei Y. , Zhang W. , N. Alshareef H. . Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy, 2018, 53 : 11
https://doi.org/10.1016/j.nanoen.2018.08.035
118 Yu Q. Zhang Z. Qiu S. Luo Y. Liu Z. Yang F. Liu H. Ge S. Zou X. Ding B. Ren W. M. Cheng H. Sun C. Liu B., A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution , Nat. Commun. 12(1), 6051 ( 2021)
119 Feng J. , Sun X. , Wu C. , Peng L. , Lin C. , Hu S. , Yang J. , Xie Y. . Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc., 2011, 133( 44): 17832
https://doi.org/10.1021/ja207176c
120 He P. , Yan M. , Zhang G. , Sun R. , Chen L. , An Q. , Mai L. . Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7( 11): 1601920
https://doi.org/10.1002/aenm.201601920
121 Zhou J. , Wang L. , Yang M. , Wu J. , Chen F. , Huang W. , Han N. , Ye H. , Zhao F. , Li Y. , Li Y. . Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater., 2017, 29( 35): 1702061
https://doi.org/10.1002/adma.201702061
122 Liang H. , Shi H. , Zhang D. , Ming F. , Wang R. , Zhuo J. , Wang Z. . Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater., 2016, 28( 16): 5587
https://doi.org/10.1021/acs.chemmater.6b01963
123 Zhang S. , Wang J. , L. Torad N. , Xia W. , A. Aslam M. , V. Kaneti Y. , Hou Z. , Ding Z. , Da B. , Fatehmulla A. , M. Aldhafiri A. , A. Farooq W. , Tang J. , Bando Y. , Yamauchi Y. . Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors. Small, 2020, 16( 12): 1901718
https://doi.org/10.1002/smll.201901718
124 Zhou Y. , Xu Q. , Ge T. , Zheng X. , Zhang L. , Yan P. . Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency. Angew. Chem. Int. Ed., 2020, 59( 8): 3322
https://doi.org/10.1002/anie.201912756
125 Zhang Z. , Gong Y. , Zou X. , Liu P. , Yang P. , Shi J. , Zhao L. , Zhang Q. , Gu L. , Zhang Y. . Epitaxial growth of two-dimensional metal−semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano, 2019, 13( 1): 885
https://doi.org/10.1021/acsnano.8b08677
126 Shi J. , Huan Y. , Zhao X. , Yang P. , Hong M. , Xie C. , Pennycook S. , Zhang Y. . Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano, 2021, 15( 1): 1858
https://doi.org/10.1021/acsnano.0c10250
127 Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204
https://doi.org/10.1007/s11467-021-1114-5
128 Du L. , Wang Z. , Zhao G. . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17( 2): 23602
https://doi.org/10.1007/s11467-022-1152-7
129 Yu H. , Kutana A. , I. Yakobson B. . Carrier delocalization in two-dimensional coplanar p−n junctions of graphene and metal dichalcogenides. Nano Lett., 2016, 16( 8): 5032
https://doi.org/10.1021/acs.nanolett.6b01822
130 Zhang Y. , Yin L. , Chu J. , A. Shifa T. , Xia J. , Wang F. , Wen Y. , Zhan X. , Wang Z. , He J. . Edge-epitaxial growth of 2D NbS2-WS2 lateral metal−semiconductor heterostructures. Adv. Mater., 2018, 30( 40): 1803665
https://doi.org/10.1002/adma.201803665
131 Fu Q. , Wang X. , Zhou J. , Xia J. , Zeng Q. , Lv D. , Zhu C. , Wang X. , Shen Y. , Li X. , Hua Y. , Liu F. , Shen Z. , Jin C. , Liu Z. . One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30( 12): 4001
https://doi.org/10.1021/acs.chemmater.7b05117
132 Wang X. , Wang Z. , Zhang J. , Wang X. , Zhang Z. , Wang J. , Zhu Z. , Li Z. , Liu Y. , Hu X. , Qiu J. , Hu G. , Chen B. , Wang N. , He Q. , Chen J. , Yan J. , Zhang W. , Hasan T. , Li S. , Li H. , Zhang H. , Wang Q. , Huang X. , Huang W. . Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun., 2018, 9( 1): 3611
https://doi.org/10.1038/s41467-018-06053-z
133 Zhai X. , Xu X. , Peng J. , Jing F. , Zhang Q. , Liu H. , Hu Z. . Enhanced optoelectronic performance of CVD-grown metal−semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 2020, 12( 21): 24093
https://doi.org/10.1021/acsami.0c02166
134 S. Leong W. , Ji Q. , Mao N. , Han Y. , Wang H. , J. Goodman A. , Vignon A. , Su C. , Guo Y. , C. Shen P. , Gao Z. , A. Muller D. , A. Tisdale W. , Kong J. . Synthetic lateral metal−semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc., 2018, 140( 39): 12354
https://doi.org/10.1021/jacs.8b07806
135 Li J. , Yang X. , Liu Y. , Huang B. , Wu R. , Zhang Z. , Zhao B. , Ma H. , Dang W. , Wei Z. , Wang K. , Lin Z. , Yan X. , Sun M. , Li B. , Pan X. , Luo J. , Zhang G. , Liu Y. , Huang Y. , Duan X. , Duan X. . General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579( 7799): 368
https://doi.org/10.1038/s41586-020-2098-y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed